Mergesort analysis

Max Berger

June 8, 2004

In this analysis we are counting data comparisons only. We found out that

$$datacomp(mergesort(n)) \leq \left\{ \begin{array}{ll} 0 & \text{if } n \leq 1 \\ 0 + 2*datacomp(mergesort(\frac{n}{2})) + n & \text{if } n > 1 \end{array} \right.$$

Since we are interested in analyzing the worst case, we can assume = instead of \leq . Rewritten, the equation looks like this:

$$D(1) = 0$$

$$D(n) = 2D(\frac{n}{2}) + n$$

to find the values to plug in, we need to find $D(\frac{n}{2}), D(\frac{n}{3}), D(\frac{n}{4}), \dots$

$$D(\frac{n}{2}) = 2D(\frac{n}{4}) + \frac{n}{2}$$

$$D(\frac{n}{4}) = 2D(\frac{n}{8}) + \frac{n}{4}$$

$$D(\frac{n}{8}) = 2D(\frac{n}{16}) + \frac{n}{8}$$

$$D(\frac{n}{16}) = 2D(\frac{n}{32}) + \frac{n}{16}$$

$$D(\frac{n}{32}) = 2D(\frac{n}{64}) + \frac{n}{32}$$

If we plug these in recursively into the original equation we get:

$$D(n) = 2D(\frac{n}{2}) + n$$

$$D(n) = 2(2D(\frac{n}{4}) + \frac{n}{2}) + n$$

$$= 4D(\frac{n}{4}) + n + n$$

$$D(n) = 4(2D(\frac{n}{8}) + \frac{n}{4}) + n + n$$

$$= 8D(\frac{n}{8}) + n + n + n$$

$$D(n) = 8(2D(\frac{16}{8}) + \frac{n}{8}) + n + n + n$$

$$= 16D(\frac{n}{16}) + n + n + n + n$$

$$D(n) = 16(2D(\frac{n}{32}) + \frac{n}{16}) + n + n + n + n$$

$$= 32D(\frac{n}{32}) + n + n + n + n + n$$

This seems to develop a pattern. The pattern is:

$$D(n) = nD(1) + \sum_{i=1}^{\lg_n} n$$
$$= 0n + n \sum_{i=1}^{\lg n} 1$$
$$= n \lg n$$

So mergesort uses $n \lg n$ comparisons in the worst case.