CS1412

Introduction into programming principles Il

Max Berger

CS1412: Introduction into programming principles Il
Max Berger

Table of Contents

Overview of CS1412 / SPriNg 2006ceeuueeenieeiieeeie e et re e e e e e et e e e s e eataeranaeernaes Vii
SYHAIOUS .. Vii
(0o TN = =T @ o] = 1 Y TS Vii
AnnouncemMENtS / ASSIGNMENESiiveiiii e e e e e e e e eeenas Vii
ClASS HOUIS ..t e e e et e e e eaa s vii

PN 1= g0 =1 ot o o] T os Y A Vii
Civility in the ClaSSrO0Mc.uuiiii e eaes viii

(= o o o ' viii

1S 0 (o TSP viii

TEXE BOOKS ...ttt ettt ettt et e et e e et e et viii
TeXTBOOK POLICY .ovviiiei i viii
SOFIWEI .ttt viii

L =" |1 o iX
EXpectation from STUENESccovniiii e e e iX
Organization Of thiS TECIUIEcvve i e X
SCREAUIE ...t e et e et e et e e e eae X
(@] o 7= ox @ 1 1 - 1o o [N 1
1. Introduction to ObjECt OFiENtatioNcoeeuniiii i 3
What iS 0bjECt OFENtAiON?uuiiii e e e e s 3
Properties of object Orientationcc.uiiiiiiiiiii e 3

1= 00117 oo | 3
L0 0o 1o ST 4

22 1= o 1= 1 (o o RS 8
What S eNCAPSUIGLIONT ...evuneeii e e e e e e e e ean s 8

3. Information / implementation hidingc.ccoiiiiiiiii e 10
Visibility MOIfIErSoveiiei e 11

(€T 1 S S 1 (< = ST UPPRRPPN 12

= 15017/ - 14
DeriVed PrOpertiesuiiie et 15
ASSOCIBLTIONS ...ttt e et a s 16
0oL 18

S = L (= Lo PSP 20
LI o] = o T L= o111 Y 22
L Y= TS 28
MESSAGE SITUCTUIE ...eeeeeeei et e e et e e e e e e e e e e e e e e e e eenns 28
MESSAZE ArQUIMENTSuieieit et et e e e et e e e e et e e e et e et e e e e e e e e eaeenaeens 29

The roles of ObjECtS IN MESSAYESvuiiiii i 32
TYPES Of MESSAGES ..uevvteeiii et e et e e e e e e e e e et e e e e e e e et a e e e e eaneees 32

A O = == = PRSP 34
Class operations and class attributeScceuiviiiiiii e 36

8. INNEITEAINCE ...eve e e e et et e e 39
MUItiple INNEMTANCE .. .ceve e e e 43

9. POIYMOIPRISM <.cec e 44
PN 1S (= Tot o 0 == 0] P 48

O 7= o 1 o 52
S 101007 1Y 57
[1. Object Orientation IN CHt ... e e e e e e e e et e e e e e eanaeeaen 58
Object Orientation iN CH+ OVEIVIEWcovuiiii e e e e e e e e e e e e e eanees Ix
L1, ClESSES 1N G oottt e et e e et e aaans 61
ClasS AEfiNITIONS ... et e et ees 61
Where do things gO7cvveii e 64
Incomplete class deClarations.vevuieiiiiciee e 66
ClaSSES VS, POD ...iiiiiiiiiii ettt e 67
ODBJECt NANAIES ... e 68
Dynamic object handleSccoeviiiiiii i 68

CSl1412

Static ObjeCt hAaNAIESeniiii e 71

Static Member Variablesiiiiii e 73
Static Member FUNCLIONSuuiiiii e 73
INline Member FUNCLIONSuuiiiiiieeee e 75
L1 76

12. ConStructors and DESIIUCIONSuuiiiiieeteii et 78
CONSITUCTONS ...ttt ettt ettt et e e e e e enans 78
Default CONSIUCTONceeeeieeeiiti ettt et e eeaens 78
Constructors With parametersooveevviiiieii e 80

The COPY CONSITUCLOieiieii et 8l
(D=1 (0ot (o] £ TP TPPT 82

L3, INNEITANCE ...eevi et 88
VIFEUBL .o e et 88
Base constructors and ProteCtedoveeeeuiiieiiiiieeeii e 91
Calling hase TESLIUCTONSccceieieeiiii e 92
Calling Specific Base CONSIIUCIONScocvuiiiiiiiieeeei e 93

PuUre Virtual / ADSIFECEcoovniii e M
Something completely different: VECIOrviiiiiiiiiiiii e 95
Multiple Inheritance and virtua inheritancecccooviiiiiinici e 102

14, ACCESS SPECITIENS ..o 104
81016 T o PP UPPPT 104
[S10011= ol (= o [P T O PTTSUPPRRP 104
PIIVELE ..ttt ettt 104
FEIENOAS ..ot e 104

15, TOMPIAEES ...ttt e et eaans 106
16, THE STL ittt 109
CONBINEY'S ...ttt ettt ettt e et e et et e e et e eenens 109
SEOUEBICES ...ttt ettt ettt ettt et e 109

LS = 0] £ TP PP PPT 112
ASSOCIALTIVE CONLAINENS ...ttt 114

[TEratOr CALEJONTES ... eieiun ettt ettt 115
ALGOTITAMS L. e e et e 116

T WXWWIAGELS ..ttt e e et e e et e e e et e e e ena e aees 118
A 110 To [§ ol (oo H ST PPPTOPPPPTRRPPPIN 120
What are GUI tOOIKITS?coeiiiiiiiiii e 120
What iS WXWIAGELS? ... 121

18. A small WXWIidQELS PrOgIaIMcouuuiiiiiii ettt et e e e e eens 122
THE COUR ... et 122

GUI Elements 8S ODJECES ... ccevveiieiiii e 123
Event driven programmingceeeeeueeeeiineeeeii e e 123
UNICOUE ...ttt e e e b 124
MUIIPIE FIIES . e 125
(2o o o PP UPPTPPTN 125
{2 = 1 = PPN 125
WXIMEBNUBEK ...ttt e e 125
SEBEUS Bl ...vneeeieeii et 126

19. FlliNG @ WINAOWeuniiiii e 127
AddiNg @ BULLONueiii e 127
LBYOULTNG .ottt ettt e e et e et 127

aEA TNPUL et 129

List of Figures

1.1, UML ShOrt ClaSS NOALIONuiiiiiiieieeii et e et e e e 5
1.2. UML 10NQg ClaSS NOLALIONvuiiiieciie e e e e e e e e e e e e e e e et e e e e e eaneees 5
1.3. UML long class notation with some attributes and operations.............cccoeevviieiiiiviiieeeinns 6
2.1. Operations and attributes of HOMINOIAcocuiiiiiiiii i 8
2.2. The HOMINOIA'S CItY ..ucivuiiiiieiiii et e e e e e e e e e e e e et e e et aeeaaeaanneees 9
T I =T = o Q= o) Y AT PP 10
3.2. Example of the same attributes, with getters and SEters.........cooveviviiiiciii i 13
3.3. Excerpt from the atomic bomb, now with getters and setters...........ccooveviveviiiviieeeeneee, 14
5.1. Anobject With ItShandlecoou i e 22
5.2. hom1 pointing at the object with handle 602237cciiiiiii i, 23
5.3. hom2 pointing to the object with handle 142857ccoveiiiiiiiiee e 23
5.4. hom1 and hom2 pointing to the same object, object 142857 is unreachable....................... 24
6.1. Dissection of a message and itS COMPONENESccvuiiiiiieiiieei e e e e e 29
6.2. Hominoid with one operation with in and out parameters.............ccoccceveviiiivinieeieeeieees 30
6.3. Call to @ HOMINOIA OBJECLccuuiiiiicei e e e e e e e eaa e 30
6.4. Call to a Hominoid object With return arrowWccuviiiiiiii i, 31
6.5. Timer detonating two DOMIBSc.uiiii 31
6.6. A TV With @ ReMOLE 8N TUNEYciiiiiieiiiii ettt e e e eeeas 31
6.7. Communication diagram fOr TVcouiiiiiiiii e e 32
7.1. Three objects of the same class and their memory requirements............cccoeevvevevevieeeennenne, 35
7.2. 15 objects sharing the SAME ClaSSivviiiii e 35
7.3. Grid for the Hominoid, implement completely static since thereisonly one...................... 37
7.4, SOIULION TOr SCrabble ... 37
7.5. A color class with static methods for Creationcocovveiiiiiiciii e, 38
7.6. Example solution for LOCatioN ClaSScvuuiviiiiiiiie e e e e e e 38
8.1. UML diagramm for class AIrCraftooceueiiiiiiii e e 39
8.2. Glider inheriting from AIFCraftoivuiii e 40
8.3. Larger example of INheritanCeoovvviiiii e 42
8.4. Example solution for vehicle iINNertanCeccuvivii i 43
8.5. Example of multiple INNENtaNCeccevniii e 43
9.1, A ClassS fOr POIYQONSuuiiiiieie e e e e 44
9.2. Polygon With SOME SUDCIBSSESuiiviiieiiieii i ee e e e e e e e e e et e e e e anaeeeen 45
9.3. Polygon with subclasses that overwrite methodscoooeviiiiiii i 45
9.4. Inhertiance diagram for AITCIaftSccviiii i e 47
9.5. Example operation 0N VENICIEScovniiii e 49
9.6. Vehicles with abStraCt SUPEICIAsScvvuiiiiei e e 50
9.7. Abstract objeCt as dONE ON PAPEScveuneeiiie e e e e e e e e e e e aaaas 50
10.1. Two classes that have Nothing iN COMMONcouuiiiiiii e 52
10.2. Two different stacks for two different typeSooovvviiiii i 52
10.3. Two similar stacks for two different tyPeSovvviiiii i 53
10.4. A gENENIC SEACK ClBSS ...iivuiiiiieeiii e i et et e e e e e e e e e e e e e e et e e e e e aanaees 53
10.5. The STL Class "V ECIOr" ...ttt ettt e et e e et e e e eaa e eeees 55
111 HEIO WOIT ClBSS ettt e et e e et e e eaaans 61
11.2. Hello redefined for implementationooiiiiieiiii e 61
G oY g T PP 63
11.4. Specification fOr NEOceve i 63
11.5. Overview Of @ Class iN Ch oouuiiiiii e e e 64
I T N O o0 0 65
11.7. Example of two classes referencing €ach Otherccocoiiiiiii i 66
N o 1 = o = = PSPPI 78
D2.2. A QIS ettt 79
R R o o o O == RSP 80
12.4. A Person With @ LOCEHIONcveeviiiiiiiiis et e et a e e eaees 82
125, Car anA WREEIS ...viii e e et 83
19.1. Sample Stacked DOX SIZEFScvvucii e 128

List of Examples

1.1. Define these items as class, operation or attributeccooeviveiii i, 4
1.2. EXaMPle Class DIiagraMScvue e eeii e e et e e e e e e e e e e e e et e e et e e e e e e eaanas 7
3.1. Public, private, and read-only attribULEScoeviieiiiiiiii e 11
3.2. Combination Of StUAENES FESUILSuiiiiiii e 12
3.3. Atomic bomb with a derived attributecoooviiiii 15
3.4. Actual implementation of derived attributec.ooveeiiiiii i, 16
3.5. Lamp with a bulb one-way navigablecciiiii i 17
3.6. Lamp with bulb, two-way Navigablecc.iiiiiiiii 17
3.7. Lamp with bulb, one-way navigable, shown as associationcc.ccueveviieviiiieiineninnnns 17
3.8. Lamp with bulb, two-way navigable, shown as assoCiationccooeeevveiiiieiiiieeiineennnn. 18
3.9. Atom bomb and timer as two Separate ClasseSccvvuveiiiiiii e 18
3.10. MUltipliCity ON @triDULESvuiii e e e e r e e 19
3.11. MUltipliCity ON @SSOCIALONScvvueiiiieeii et e e e e e e e e et eeaneeeees 19
3.12. A timer for multiple BOmMBScee 19
5.1. Homioid class shown With 3 iNSLANCESoeviiviiieiiii e 25
5.2, INSLANCES FOr CaI'S ..oeevuieieiiii ettt et e e e e e e e et e e e aaan e e eeeanas 25
5.3. Class diagram and object diagram for Hominoid with Positionccccccviiviiiincins 26
5.4. A bike instance with two Wheel INStANCESc.uuiiiiiiiiiieii e 27
5.5. Instances for the bomb and the modern timerooooviiiiiiiiii e 27
0 I o = o o 65
7 o 1= o o o) o P 65
G 3= g T o o 66
13.1. Example: Implementation of PolYQgONcoeuiiiiii i 89

Vi

Overview of CS1412 / Spring 2006

Syllabus

Course Objective

Short Synopsis

Object-oriented programming in C++ with emphasis on evaluation of alternative program design
strategies. Class design, recursion, linked and dynamically allocated structures. This classwill deepen
the students understanding of designing and evaluation of larger programs.

Learning Outcomes

1. Students will analyze a problem and develop an object-oriented solution.

2. Students will use basic UML diagrams for their design.

3. Students will master C++ class syntax and semantics.

4. Studentswill confidently apply the Standard Template Library containers and algorithms.

5. Students will compare and evaluate alternative software designs for at |east one project.

Methods of Assessment

1. Participation in class through excercises

2. Participation in the lab through lab excercises

3. Work on individual programming / design projects

4. C++ Programming homework excercises

5. Written and final exams

Announcements / Assignments

Announcements are posted on the class web page [http://max.berger.name/teaching/s06/]. Please

check them frequently.

Students are required to be responsible for knowing about oral announcements or requirements not

listed in this syllabus.

Class Hours

Section Activity Time L ocation
92 Lecture TR 9:30- 10:50 am CSs201
505 Lab T 12:30 - 1:50 pm PE 118

Attendance policy

Attendance in class will be checked every day. Attendance is not a certain percentage of the grade,
but may be bring a grade down if to many classes are missed.lt is the students own responsibility to

acquire the material covered in classes she/ he missed.

Vi

http://max.berger.name/teaching/s06/
http://max.berger.name/teaching/s06/

Overview of CS1412 / Spring 2006

There will be excercises in class that can not be made up, unless you have avalid excuse. Proof (e.g.
doctors note) may be required.

If, for any reason, you are absent on an exam / programming test date, you will have to notify the
instructor on the same day at the latest. This can be done by aroommate, friend, parent, etc.

Civility in the classroom

Unacceptable behavior in the classroom includes. cellular phones or beepers, demanding special
treatment, excessive tardiness, making offensive remarks, prolonged chattering, sleeping, "I paid for
this' mentality, leaving thelecture early, dominating discussions, making unnecessary jokes, speaking
out of turn, shuffling backpacks and notebooks, reading other material during class.

Lab policy
Lab attendance is required. Y our grade will be affected by missed labs.

The Lab assignments have to be done during the lab period in the Lab. The students may leave early if
the assignments are completed. If the assignments are not completed students may submit them after
thelab, but only if they have worked on it during lab time!

Instructors

Lecturer: Max Berger [mailto:max@berger.name], CS 306 J, Office hours: Tuesdays 11 - 12
Teaching Assistant: TBA

The best way to reach meis to schedule an appointment via e-mail.

Text Books

Mandatory:

» Fundamentals of Object-Oriented Design in UML By Maeilir Page-Jones. Addison Wesley, ISBN:
020169946X

Strongly suggested:

* UML Distilled: A Brief Guide to the Standard Object Modeling Language, 3/E Martin Fowler
Addison Wesley, ISBN: 0-321-19368-7

And either

» C++ Pocket Reference By Kyle Loudon 1st Edition May 2003 Series: Pocket References ISBN:
0-596-00496-6

or

e C++inaNutshell A Desktop Quick Reference By Ray Lischner 1st Edition May 2003 Series: In
aNutshell ISBN: 0-596-00298-X

Textbook policy

If you can't find the mandatory text book at the book store please get it online. There will be tests over
material in the text book that might not be covered in class!

Software

Y our C++ programs will need to able to run under one of the following environments:

viii

mailto:max@berger.name
mailto:max@berger.name

Overview of CS1412 / Spring 2006

* Eclipse CDT on Windows with MinGW GCC 3.2

» Eclipse CDT on Macintosh with Apple GCC 3.4 or 4.0 (installed in the lab)

Please read the installation instructions for eclipse [http://max.berger.name/teaching/cdt/].
Y ou will need a program to draw UML diagrams. Two of them are:

» Poseidon for UML Community Edition [http://gentleware.com/]

» MagicDraw Community Edition [http://www.magicdraw.com/] (installed in the lab)

Y ou will also need:

* A program that can create/ unpack ZIP files, example: FilZip [http://www.filzip.com] (not needed
inMac OS X / WinXP)

» Adobe Acrobat Reader [http://www.adobe.com/] or another PDF reader.

All necessary softwareisinstalled in the lab. Y ou may use the provided links/ information to install
these on your personal computer.

Grading

Item Weight (MidTerm Grade) Weight (Final)
Labs 20% 15%
Tests & Final 20% 30%
Programming Excercises 30% 15%
Projects 20% 30%
Participation 10% 10%
Total 100% 100%

Numeric to letter grades: 0-59: F, 60-69: D, 70-79: C, 80-89: B, 90-100: A. A higher grade may be
given if students shows promise of success, A lower grade may be given if student shows lack of
discipline (e.g. many missed classes).

Zero-Rule: Should any of theindividual grade averages be zero (e.g. never turned in any projects) the
student will receive an F regardless of the total average!

Expectation from students

Students should:
« Attend every class and be on time
* Bring the following material to class:
« Letter sized paper
¢ A pencil and an eraser (ideally) or apen
e Aruler
These items may become unnecessary if the class can be held in the lab (still working on it)

 Students are not to use their own laptopsin class

http://max.berger.name/teaching/cdt/
http://max.berger.name/teaching/cdt/
http://gentleware.com/
http://gentleware.com/
http://www.magicdraw.com/
http://www.magicdraw.com/
http://www.filzip.com
http://www.filzip.com
http://www.adobe.com/
http://www.adobe.com/

Overview of CS1412 / Spring 2006

 Firstlabis Tue, January 17th

 Starting next class we will have self-assigned seats

Organization of this lecture

The lecture is organized in three parts:

e Part |, “Object Orientation” introduces object-orientation and defines the nine concepts of object

orientation. It is completely language independet.

» Part I, “Object Orientation in C++" shows how to use these object oriented techniques in the C

++ language.

o Part 111, “wxWidgets’ introduces wxWidgets, an object-oriented cross-plattform GUI development

framework written in C++.

Schedule

Week Material Misc Projects Prog.
Excercises
12-Jan 1 Introduction
17-Jan 2 Encapsulation First Lab
19-Jan Information Hiding, P1
Attributes
24-Jan 3 Associations
26-Jan State retention Object
identity
27-Jan X Drop with P2
refund
31-Jan 4 Messages
2-Feb Classes P3
7-Feb 5 Inheritance
9-Feb Polymorphism P4
14-Feb 6 Genericity
16-Feb Test over P5
Part |
21-Feb 7 Classesin C++
23-Feb Classesin C++ Project | P6
28-Feb 8 Classesin C++
2-Mar Classesin C++ P7
7-Mar 9 Constructors
8-Mar X Midsemester
Grades
9-Mar Destructors P8
14-Mar X Spring Break
16-Mar X Spring Break
21-Mar 10 STL

Overview of CS1412 / Spring 2006

Week Material Misc Projects Prog.
Excercises
22-Mar X Last day to
drop / Pass
Fail
23-Mar STL
28-Mar 11 STL
30-Mar Templates no Test here
4-Apr 12 STL
6-Apr STL Project 11
11-Apr 13 Test here
13-Apr wxWidgets
18-Apr 14 wxWidgets
20-Apr wxWidgets
25-Apr 15 wxWidgets
27-Apr wxWidgets
2-May 16 Review for Fina Project 111
15-May X Final grades

Xi

Part I. Object Orientation

Table of Contents

1. Introduction t0 ObJECt OFENtALIONccvuiii e e e e e 3
What iS 0bJECt OFTENtALIONTvuiiii e e e e e aens 3
Properties of ObjeCt OFENtatioNoevuiiiiiei e e e 3
=011 oo | P 3
L6 0o 1o PP 4

2 =0 1= U (o o 8
What 1S €NCAPSUIGLIONTueeeieii e et e e e e e e e e e e e eeanns 8

3. Information / implementation hidingcccouiiiiiiiii e 10
ViSiDility MOGIFIErSoieeieii e e e e e e e e ees 11
LC T 1 I S 11 = PSPPSRI 12
=2 1017 - 14
(D= Ao = o o= =P 15
F S o e o = TSP 16
0T oL 2 18

S = L= = (=010 o PP 20

LI o= A T L= o1 11 /S 22

LT 1Y == T 28
MESSAGE SITUCTUIE ...eeeieeee et e e e et e e et e e e e et e e e e e e e et e et e e e enneenns 28
MESSAGE AIQUIMENTSuieeeeeet e e e e e e et e e e e e e e e et e e ea s e e e e et e et e et e enneaneeens 29
The roles of ObJECtS IN MESSAGESvuuiiii i e e e e aanas 32
TYPES Of MESSAGES ... vvvnieii ettt e et et et e e e e e e e e e e et e e e r e e e et e e et e eeannes 32

A O === = PSP 34
Class operations and class attribULEScccuuiiiii i e 36

8. INNEITEAINCE ...t ettt eaaan 39
MUIIPIE INNEITANCE ... e e e e s 43

9. POIYMOIPRIST ..o e 44
PN 1S (= Tot e 0= 48

O 7= 1 o 52

101007 1Y 57

Chapter 1. Introduction to object
orientation

What is object orientation?

Definitions from a dictionary:

Object A thing presented to or capable of being presented to the senses.

In other words: Just about anything!

oriented directed toward.

therefore we can deduct:

Object oriented directed toward just about anything you can think of.

Properties of object orientation

Since thisis very ambiguos, we define object orientation as 9 properties:

Chapter 2, Encapsulation

Chapter 3, Information / implementation hiding
Chapter 4, State retention

Chapter 5, Object identity

Chapter 6, Messages

Chapter 7, Classes

Chapter 8, Inheritance

Chapter 9, Polymorphism

Chapter 10, Genericity

Terminology

To understand what whe are talking about we need to define some terms:

| mportant

attribute represents information about an object (something you can describe, has/ is
relationship, e.g. thiscomputer hasandintel chip, the cpu speed is4000 mhz)

operation an action, with a possible return value (somehting you can do, e.g. i canturn
on this computer)

class the type of the object (is-arelationship, e.g. thisisacomputer, thisisatable)

object a specific instance of aclass (with a distinguishing word, e.g. this computer,

my laptop, my chair, Ryan's chair)

Conventions:

attributes, operations, and objects start with lowercase letters (e.g. size, type, myComputer)

Introduction to object orientation

* classes start with uppercase letters (e.g. Computer, Chair, Keyboard)

* names containing multiple words are concatenated, each word (starting with the second) is
capitalized (e.g. chipType, turnOn, ComputerScreen, myM pegDecoder, myTv)

* operations have a set of parenthesis after the name (e.g. turnOn(), plugin())
Please note: In this class these conventions are enforced

What do the following things represent?

Example 1.1. Define these items as class, operation or attribute

size

chair

numberOfLegs

color

sitOn

milesDriven

car

gasUsed

turnL eft

direction

name: size

type: attribute

name; chair

type: class

name: numberOfLegs
type: attribute

name: color

type: attribute (could also be aclass, asin green, red, ...)
name; sitOn

type: operation
name; milesDriven
type: attribute

name: car

type: class

name: gasUsed

type: attribute

name; turnLeft

type: operation
name: direction

type: attribute (could also be aclass)

UML notation

UML stands for Unified Modelling Language.
UML consists of different types of diagrams.
We will be looking into class diagrams.

Two types of information:

* Information about the class

» Relations between classes (later)

There are two different notation for classes. The shortened notation and the full notation.

Introduction to object orientation

Figure1.1. UML short class notation

ExampleClass

A class is denoted by arectangle. The name of the class is written in bold font. The color isjust for
illustration.

Figure1.2. UML long class notation

ExampleClass

In the long notation the UML class gets divided vertically into 3 compartments:
« the top compartment contains the class name, still in bold

« the second compartment contains the attributes

« thethird compartment contains the operations

Compartmets (except for the class name) can be shown as empty, even if there are attributes /
operations present, however, all compartments need to be shown.

Introduction to object orientation

Figure 1.3. UML long class notation with some attributes and oper ations

ExampleClass

-attibute! ;int
-attibute © String
-fattributes ; float

+operation)
+operationZ] param1 © int, paramz : int)

Attributes are shown as follows:

* First the visibility modifier (explanation later) (optional)
« then optional modifiers (explanation later)

* then the name of the attribute (remember: lower case!)

» acolon (:) and the type of the attribute (optional)
Operations are shown as follows:

* First the visibility modifier (explanation later)

« then the operation's name

* in parenthesisthelist of parameters

» acolon (:) and the type of the return value (optional)

Example: Draw class diagrams for the classes, operations, and attributes from the list earlier.

Introduction to object orientation

Example 1.2. Example Class Diagrams

Chair Car

-zize Nt -zize : float
-humberOflegs -calor ; Calor
-calar : Calar -mmilesDriven

: -gazllzed
+ER0N;) ~direction
Hhrowit) -nurnberOfiyhesls
-rmadel

-nake

-VeEar

Color

+urnLeft()
+HurnRight()
+accelerster)

+crashi)
+hrakel]

Book: Chapter 3.1 - 3.3

Chapter 2. Encapsulation

What is encapsulation?

I mportant

Encapsulation is the grouping of related ideas into one unit, which can thereafter be
referred to by asingle name.

Came from the early 40's: The same pattern of instructions appear multiple times, why not give them
asingle name and re-use them?

Subroutine was born. Saves computer memory. Then people realized: Saves human memory too!

Encapsulation in OO has asimilar purpose, but is more sophisticated.

I mportant

Object-Oriented encapsulation is the packaging of operations and attributes
representing a state into an object type so that it
is accessible or modifiable only via the interface
provided by the encapsulation

Example: Hominoid class, has operations such as:
turnL eft with turns hominoid to the left by 90 degrees
advance moves hominoid one step forward

Each operation is a procedure or function that is normally visible to other objects, which meansit can
be called upon by other objects.

Attributes represent information that an object remembers. Attributes are only accessed via object's
operations. In other words, no other object can acces an attribute directly by grabbing the underlaying
variables. Another object has to go though the object's operations.

Figure2.1. Operations and attributes of Hominoid

operations

variables

advance

Only the operations may acces attibutes, they form a protective ring around the core variables
implemented in the object.

Example: location operation is used to access the loc variable.

I mportant

variable(s) One or more variables implement one or more attributes.

Encapsulation

Examples:

* acpuSpeed attribute can be implemented with one variable cpuSpeed

« alocation attribute can be implemented with two variables: locationX, locationY

« the attributes location and facingWall are both implemented with one location variable

an object structure resembles a medieval city, with a protective wall. It can be accessed only through
well-defined and well-guarded gates.

Figure 2.2. The Hominoid's City

advance

Staunch, hones yeopersons would enter the city via the gates. They would buy their pigs in the
marketplace and then leave through a gate. Only the most villainous villeins and scroful ous scalawags
would scale the wall, swipe a swine, and steal away over the parapets.

Book: Chapter 1.1

Chapter 3. Information /
Implementation hiding

Two views: public view (from the outside), private view (inside). Private view should be suppressed
from others.

information hiding: information within cannot be seen from the outside. Implementation hiding:
implementation details cannot be perceived from the outside.

I mportant

Information / Implementation is the use of encapsulation to restrict from external

hiding visibility certain information or implementation
decisions that are interna to the encapsulation
structure.

Back to the example from the book: hominoid: hides some information, example: direction. can be
changed form the outside, but cannot be read. (however, can be displayed, and we may be able to
check the position) -> information hiding.

However, encapsulation goes beyons that: can reveal information but hide implementation: Variable
inside does not need to be implemented the same way as the attribute.

Example: hominoid reveals locatin via location attribute, but how is it stored internally? could be
(xCoord, yCoord) or (yCoord, xCoord), polar coordinates or some scheme the designer dreamed up
at 1 am. However: location attribute exports the location in a specific form. We don't care how the
information is stored. Thisisimplementation hiding.

The direction is an example implementation and information hiding. Direction could be degrees
(0-359), characters (N, E, S, W), percentDirection (0.00.. 99.999), or anything else.

In aredesign, if we decide to release direction, we have to chose how to release it, however, thisis
independent from the actual implementation.

implementation / information hiding provides a black-box view. External object have view of what
the object can do, but no knowledge how.

Figure 3.1. Black Box View

facingWall

location

Benefits:

L ocalizes design decisions: Private design decision have little or no impact on the rest of the system.
Local decision can be made and changed without impact on the rest of the system. Thislimits "ripple
of change" effect.

10

Information / implementation hiding

Decouples content of information from its form of representation. No information internal istied to
external format. this prevents external users/ programmers from meddling. if aso prevents unstable
connections.

Visibility Modifiers
Visibility modifiers describe who can see and / or modify / execute an attribute or operation.
Notation in UML: shown with the visibility modifier:
e private(-)
e public (+)
Specia attribute property { readOnly} to indicate read-only attributes.

Example 3.1. Public, private, and read-only attributes

Fizh

+colar{readonly
+zize{readonly |
+HypeireadOnly
+finz{readOnly |
+alive{readOnly
+hname ;. =tring = Flufty
-contentzOfstomach

+feed()

+EW¢ml)

+kill()
-zwvimbUpzideDowni)

Practice: implement atomic bomb.

11

Information / implementation hiding

Example 3.2. Combination of studentsresults

AtomicBombr1

+armecireadOnly

-armingiCode

+zizefreadCOnly

imer

+color{readOnly

+detonated | hoolean = falze{readOnly }

+hlaztRadiuz{readOnly
=wyeighit

+harme . String = Killer
-material
+dropFromPlane]
+dlizarmi)

+detonater)
+ztartCourtDaoseni)
+hitWit A ench)
-leak)

+changel ChScreenColar]
-uzespeaker Tozayzoodiye)
+HaunchFromSub)
+zellToBaduy)

However, actual implementation is different!

Getters / Setters

In actual implementation, all attributes should be private. Attributes are read and set with getter and
setter methods.

Different notations: ObjC and Java Notation.
Setter: Both: add "set", capitalize attribute, e.g. color -> setColor()
Getter: Java (to usein this class), add "get", capitalize attribute, e.g. color -> getColor().

ObjC (just fyi): use the same name as the attribute, OR use "is" prefix in case of booleans, e.g. : color
-> color(), bw -> isBw()

Read-Only attributes; have no "setter”

12

Information / implementation hiding

Figure 3.2. Example of the same attributes, with gettersand setters

Fizh\f2

-colar ; Caolar
-Hiame
-contenrtsOf=tomach

+getCalor(] ;. Colar
+getMame) . String
+zetMamel newMame @ String)

Practice: do the same thing (bomb), now with getters and setters.

13

Information / implementation hiding

Figure 3.3. Excer pt from the atomic bomb, now with gettersand setters

AtomicBombvr?2

-armingCode | int
-armed : bhoolean
-hame ;. =tring

=zgetter==+getArmed() ; hoolean
==zefter==+zethamel hame ; String]
==getter==+getMame) : String

No matter which notation you use, in the actual implementation you should always user getters/ setters
to do the implementation hiding!

Stereotypes

New UML notation: Stereotype (the thing with the in the << >>)

I mportant
Stereotype A UML term for "a new kind of model element defined within the model
based on an existing kind of model element". Stereotypes may extend the
semantics but not the structure of pre-existing meta-model classes.
Steteotypes
» Areawayswritten in << and >>
 are completely optional
* can be applied to anything (classes, attributes, operations, etc.)
 add additional classification information
In the exampl e given above the use of stereotypes makes absolutely no sense, since everyone should

be able to figure out that these methods are getter and setter methods. | just wanted to show you
stereotypes.

14

Information / implementation hiding

Derived Properties

A derived property is a property that is not stored directly, but is derived from other properties. Most
of thetimesit is calcul ated.

UML Notation: noted with a"slash” and public, or just as agetter method. These are usually readonly,
so {readOnly} can be omitted.

Example 3.3. Atomic bomb with a derived attribute

AtomicBombinConstructionv1

+yeeight © int
+material © =tring
+hlastRadiusz | int

For the actual implementation derived attributes do not show up at all but provide a getter method:

15

Information / implementation hiding

Example 3.4. Actual implementation of derived attribute

AtomicBombinConstructionv?2

-weeight it
-material ; =tring

+getNeight() © int

+zetWeightl weight : int]
+ojethaterial() @ =tring
+zethateriall material @ =tring)
+getBlastRadiuz) ; int

Book: Chapter 1.2, UML Destilled: Chapter 3 (attributes) (36-37, 68-69)

Associations

Some properties may be modeled as their own class. This makes sense:

» When the class can be reused (e.g. both cars and bikes have wheels)

» When the class has alot of things that should be logically grouped together
Beware:

* Inmost cases, the containing class will have areference to the contained class (Car has an attribute
of type Wheel, Lamp has an attribute of type Bulb, etc)

« If the classes are equal, the attribute may be in either class (Person has an attribute leftNeighbor)

» The attribute may also be in both classes. In this case specia care has to be taken whn setting the
attribute (when actually coding it). (Person has leftNeighbor and rightNeighbor, Car has attribute
wheel : Wheel, Wheel has attribute onCar: Car)

I mportant

Navigable An association from one class to another is said to be navigable. One way
navigation goes from one class to another, while two-way navigation goes
in both directions.

16

Information / implementation hiding

Example 3.5. Lamp with a bulb one-way navigable

Lamp Bulb
bl Bulb

Example 3.6. Lamp with bulb, two-way navigable

Lamp AwareBulb

-bulb : Bulb | |-inLamp : Lamp

In UML, associations are usually shown with a line between the classes.

« |If the association is one-way navigable, the will be an open arrow at the class that the association
isnavigableto.

« |If the association istwo-way navigable there are no arrows
* Instead of showing an attribute in the attribute compartment, it may also be shown at the end of the

association. Typewill be omitted, sinceit isalwaysthe classits pointing to. In atwo-way navigable
association there will be names on both ends.

Example 3.7. Lamp with bulb, one-way navigable, shown as association

Lamph -bulb__| Bulb

17

Information / implementation hiding

Example 3.8. Lamp with bulb, two-way navigable, shown as association

LampA | iyl amp _hull | Bulb

Example 3.9. Atom bomb and timer astwo separ ate classes

Practice: Draw a diagram of an atom bomb and its timer, connect them with an association. Include
at least one attribute and operation in each class. How many attributes does your bomb have?

Bomb Timer
_zize timer) timal att
+gjaBoom(] +CauntDowni]

Bomb has two attributes; size and timer.

Multiplicity

So far we hae only talked about one-to-one relationships (Each lamp has one bulb, each bulbisin one
lamp), but there may of course be different multiplicities.

I mportant

Multiplicity for an attribute or association defines "how many" of this attribute or
association thereare. Multiplicity isgiven with as mininum number, dots
(..), and maximum number.

Multiplicity only takes whole numbers, no negatives!
Examples: A car usually has 4..5 wheels, a class has 0..75 students.
Shortcuts:

« if both numbers are the same, the .. and the second number can be omitted, e.g. a twin-lamp has
2 bulbs

« if the upper limit isunlimited a* isused: A city has 1..* houses, anovel has 100..* words
* 0.* can bewrittenas*

Common multiplicities:

» 0: A class has never any of this attribute (not really used)

» 0..1: A class has none or one of the specified (e.g. alamp has a bulb or has none, a person has a
job or has none)

18

Information / implementation hiding

* *: Any arbitray number of attributes: A file has any number of bytes

» 1: Exactly one: The hominoid has exactly one position

» 1.*: Atleast one, but any number: A poem has at |east one word, but can be infinitely long.

If multiplicity isommited, it usually means 1 or 0..1.

On attributes, multiplicity is shown in square brackets after the attribute, e.g. [2], [*], [1..4]

Example 3.10. Multiplicity on attributes

Carv1

-wheels wWheel [4..5]

Wheel

On associations, the multiplicy is shown without square brackets on the class that is multiplied:

Example 3.11. Multiplicity on associations

Cary?2

Example 3.12. A timer for multiple bombs

-WhEElS}

Wheel

4.5

Practice: assume amodern timer that can detonate up to 8 bombs at atime. Show the classesfor Timer
and Bomb and their association. Y ou may use the shortened notation for the classes.

Bomb |.-Pomb

-timer

0..8

1

Timer

19

Chapter 4. State retention

A classisagenera description: Every Hominoid has a position.

An object is an "instance" of a class and has specific values for the attributes: This Hominoid is at
position 2x5

Objects keep their state (in attributes).
Traditional methods need to have parameters. They don't know about their previous existence.

But objects are aware of the past. they retain information inside -> objects don't die, they are ready
to execute again

Example from Monopoly: A property knows its value. So when buying or selling a property, thereis
no need for the parameter "price".

Example from Hominoid. A Hominoid isat position 2x5, facing up. After the operation "forward" it is
not at 2x4, facing up. Another invocation of forward will move it to 2x3 (so the results are different).

Techspeak: an object retains state. state is the set of values that an object holds. example: hominoid
retains knwol edgde about the square and the location.

State can be compared to global variables, but here they are are encapsulated with their functions.

Encapsulation, information hiding and state are the core of object orientation. However, these concepts
are not new, they used to be called ADT (abstract data type).

Practice: Assume a Hominoid with the following state:
e Direction: (N,E,SW) =N

o PosX:int=5

e Posy :int=5

Wherethelocation (1,1) isthetop left (most north, most west) and location (20,20) isthe bottom right
(most south, most east), X goes east - west and Y goes north - south.

The operation advance() moves the hominoid one step forward, the operations turnLeft() and
turnRight() turn the hominoid by 90 degress.

Assume the following function calls:
1. advance()

2. turnRight()

3. advance()

4. advance()

5. turnRight()

6. advance()

7. turnLeft()

8. turnLeft()

9. advance()

20

State retention

What is the Hominoids state after this code?

21

Chapter 5. Object identity

Each object hasits own identity

I mportant

Object Identity is the property by which each object (regardiess of its class or
current state) can be identified and treated as a distinct software
entity.

There is "something unique" about any object that distinguishes it from other objects. This unique
thing is the object-handle (sometimes calles object reference).

Example of an object creation (books notation):
var homl: Hominoid := Hom noid. New,
Example of an object creation (C++ notation):
Hom noid *honl = new Honi noi d();

Theright hand side creates a new object of class Hominoid, and returns an object handle. In the case
of this example the handle is 602237.

Figure5.1. An object with its handle

tunRiht

602237

oo
Two rules apply for handles:
1. The same handle stays with the object for all time!

2. No two objects can have the same handle. Every new object gets its own handle that is different.
Objects may look identical (same state, same class) but if they have different handles they are
different objects! If they have the same handle they are the same.

In most OO languages (Javafor example) handles are different from all existing or having existed
objects. In C++ handles can be re-used if the original object is dead.

C++ uses the memory address as object handle.

The left part of the line (var homl:Hominoid / Homoid *homl) is a declaration that gives a
programmer-meaningful name (hom1) to a space that can hold an object handle.

The assignment (:=/ =) causes homl to hold the handl e to the object. Read: "now pointsto" or "now
refersto”

22

Object identity

In the case above: hom1 now referesto a new object of class Hominoid.

Usually you don't see the handle, but just use the variables.

Figure5.2. hom1 pointing at the object with handle 602237

hom1

turnLeft

602237 -| . = 3

location

advance

Some OO languages (C++ for example) use the location in memory as a handle (remember pointers?)
Example2: Lets create another object:

var honR: Hom noid := Hom noid. New, // books notation
Hom noid *hom2 = new Homi noid(); // C++ notation

Thiswill create a second object (of class Hominoid) with a new handle (e.g. 142857) and stores that
handle in hom2.

Figure 5.3. hom2 pointing to the object with handle 142857

hom?2

142857 1" ™

Now what happens after the assignment?

hom2 := honml; // book
hom2 = homtl; // C++

Now both variableshom2 and hom1 hold the same object handle, they both point to the same object!!!

23

Object identity

Figure 5.4. homl and hom2 pointing to the same object, object 142857 is

unreachable
hom1
e | display |
602237 e . |
iocaton |
hom?2
602237

turnLeft

tu

advance |

Having two variables pointing at the same object makes very seldom sense.

Evenworse: The object at 142857 isnow unreachable! We have no variablethat holdsitshandle! That

object has now disappeared. In C++: Memory Leak. In Java: Garbage collector.

Practice: which object handles are stored in these variables after this code has executed? Which

object(s) igare"lost" ?
Hom noi d *homtl
Hom noi d *hon?
Hom noi d *honB

new Homi noid(); // assune handle 111
new Homi noid(); // assune handle 222
new Hominoid(); // assune handl e 333

hom8 = hon?;
hom2 = hom;
Solution:

* hom3 point to handle 222

e hom2 pointsto handle 111

* homl pointsto handle 111

* the object at handle 333 islost

Notation in UML: Similar to class, but different!

» Nameisunderlined to signify instance.

» Theformat for the nameis object handle (or variable name), then acolon, then the class, e.g. hom1 :

Hominoid

* object handle / variable name may be ommited, e.g. : Hominoid (notice the colon is till there). In

this case we talk about an "anonymous instance"

24

Object identity

» Short notation: Just the name and its class in a box

* Long notation: shows one additional compartment that lists the attribtues with name, an equal sign
and the value, e.g. direction = 180

* Instances are shown in an object diagram

Example5.1. Homioid class shown with 3 instances

Hominoid * Hominoid

-direction : int hom : Hominoid

This Hominoid has 3 instances:

» Two of then are anonymous, one has a hame (hom)

 All of them have avalue for the attribute direction, but it is only shown on one of them
Notes for MagicDraw:

» MagicDraw calls the instance attributes "slots"

 Slotsare not shown by default (must be turned on)

* No attribute has a value by default (must go into menu and "create value")

» MagicDraw shows classesin orange, instancesin yellow (thisiscompletely optional, the underline
iswhat makesthe real differencel)

Example5.2. Instancesfor Cars

Practice: Draw two instances for the class Car, as given in this diagram:

Car

-size : int
-milesDriven : int
-make : String
-model : String
-year : int

25

Object identity

A possible solution:

dreamCar : Car

make = Porsche
milesDriven =42
model = Carerra
size =12

year = 2006

actualCar : Car

make = Geo
milesDriven = 152543
model = Metro

size =5

year = 1982

Since every object (must) have an object handle, relations can be shown like other attributes:

Example 5.3. Class diagram and object diagram for Hominoid with Position

hom1 : Hominoid

direction = 90
position = pos1

In this case we show the relation Hominoid - Positi
handle of position.

Warning: We use human-readable handles in UML diagrams, but in reality these are the internal
object handles (strange numbers that make no sense). The handles shown on UML diagrams do not

necessarily need to match the names used for the v

Assiciations can till be shown, but they have no |
thedlots

When an attribute has multiple values (e.g. acar has 4 wheels), then the elements are listed separated

by a comma.

Hominoid .
-position, | Postion
_direction ; int i
-p0sy
o

pos1 : Postion

posx =10
posy = 20

on as attribute (slot), where the value is the object

ariables in actual programming!

abels. Rather the information should be shown in

26

Object identity

Example 5.4. A bike instance with two whesdl instances

Bike -Wheels& Wheel

2

: Bike wheell : Wheel

wheels = wheell | wheell
wheel2 : Wheel

Example 5.5. Instances for the bomb and the modern timer

Now draw an object diagram for the modern bomb timer. Use 3 bombs and 1 timer. Add all slots
needed (on Timer and Bomb)

0..8 1

A solution:

masterTimer : Timer
bomb = killer, destroyer, snuffles

timer = masterTimer timer = masterTimer timer = masterTimer

27

Chapter 6. Messages

Objects communicate via messages. Messages can ask to carry out an activity. They may also carry
information from one object to another object.

| mportant

message amessageisthe vehicle by which a sender obejct obj1 conveysto atarget object
obj2 ademand for object obj2 to apply one of its methods

obj1 and obj2 may be the same objects, so objects may send messages to themselves.
We will see:
* the anotomy of a message

« the characteristics of message arguments

the role of an object sending the message

the role of an object receiving the message

the 3 types of messages

Message structure

In order for obj1 to send a message to obj2, obj1 must know 3 things:

1. Thehandle of obj2. (Y ou need to know who to talk to). obj1 will usually store obj2's handle in one
of its variables (remember the section called “ Associations’)

2. The name of the operation of obj2 that obj1 wishesto execute

3. Any additional information (arguments) that obj2 requires to execute the operation

I mportant

sender the object sending the message (obj1 in this example) is called the sender.

target the object receiving the message (obj2 in this example) is called the target
Example from the Hominoid:

homl. t ur nRi ght ; /1 Books notation
homil- >t ur nRi ght () ; /1l C++ notation

hom1 points to (contains the handle of) the target object of the message. turnRight is the name of the
operation. In this case, turnRight has no arguments.

The sender in this case the the object from which thislineis called.
Compare to procedural programming:

call turnRi ght(hontl); /1 Books notation
t urnRi ght (homt) ; /1 C++ notation

28

Messages

Traditional: the operation is important, the data is just an argument. What do | want to do? Oh, and
by the way, thisiswhat you need to do it with.

OOQ: the target isimportant, the message is second. Hey, you object! Do this!

More like real life: If you shout out "someone should turn on the lights®, nothing will happen. They
you call on acertain person, and then they may wake up and do it... However, if you point at someone
and say "you! please turn on thelight" it magically happens.

Reasoning: Different objects may provide the same operation.

Example operation: sitOnlt() may beprovided by the classes Table, Chair, and Floor. Both are different
objects, and the actual method is very likely differnt.

Example: operation: takeMeToSchool () may be provided by the classes Car, Truck, School Bus, Bike,
Feet, Helicopter.

Message arguments

Like functionsin traditional programming, messages pass arguments back and forth.
Example of an advance function that has two arguments:
» noOfSquares that tells the function how many numbers of squares to advances (input)

« advanceOk tells the sender if it worked (or if there was awall) (output)

Figure 6.1. Dissection of a message and its components

hom1.advance (in noOfSquares, out advanceOK)

»
//(\\ ‘\\\ \\\
i N NG 5
i i - output-arg
target object operation name input-arg li ik

l\\ /4 LA
L =
~ / b

message

The same in C++ notation

homl- >advance(noOf Squar es, advance(k); [/ C++ notation with pass-by-reference
advanceCk = homl- >advance(noOf Square); // C++ notation with return val ue

Rember: One output value may be done as areturn value, multiple output values have to be done with
pass-by-reference.

There are 3 types of arguments:

in input arguments (pass-by-value)

out output arguments (return value in C++ if only one, otherwise pass-by-reference)
inout combination of in and out. (pass-by-reference)

If the direction is not shown, and is not clear from the context, it usually means "in"

In UML, in and out can be shown before the parameter name

Note for MagicDraw: In Magicdraw set "show operation parameters direction kind" to true.

29

Messages

Figure 6.2. Hominoid with one operation with in and out parameters

Hominoid

+advance(in noOfSquares : int, out advanceOKk : boolean)

In pure OO languages (smalltalk), all arguments are object handles.

In mixed programming languages (C++, Java) there are two types of arguments

» object handles (in C++: pointers, e.g. Car*)

* data(int, boolean, float, ...)

In UML, messages are shown in "communication diagrams'

We now know 3 types of UML diagrams:

* Class diagrams, contains classes (Chapter 3 in UML distilled). Defines a static view.

» Object diagrams, contains instances (Chapter 6 in UML distilled). (In MagicDraw thisis aso in
class diagram, however in "real application” these should not be mixed). Defines a snapshot view
of the system.

» Communication diagrams, contain instances and messages (Chapter 12 in UML distilled), Defines
a"dynamic view" of the system.

Generally, these 3 should not be mixed!

Figure 6.3. Call to a Hominoid Object

1: advance(noOf Squares=3, advanceOk=advok)
—>

hom1 : Hominoid

In a communication diagram:
* Instances are shown (Magicdraw does these in green)
 Associations are shown where messages are sent

» A message is an arrow next to an association. The arrow has to be a solid triangle! (this denotes a
synchonous call, which iswhat we'll do in this class)

» Thelabel for the arrow shows:
» The sequence number (in what order do the messages appear?)
¢ The name of the operation to call
e Theinput and output arguments, as needed.

Alternate Notation for return values:

30

Messages

Figure6.4. Call to a Hominoid object with return arrow

2: advance(noOfSquares=3)

hom1 : Hominoid

2.1: advanceOk = true
é —

In this case, the return values are shown on areturn arrow. A return arrow:
* isanopen arrow
* isdashed

Sequence numbers describe the order in which the events are sent. Sequence numbers are consecutive
(1,2,3,4,5, ...). They may contain sub-sequences (2, 2.1, 2.2, 3,4,4.1,4.2,4.3, ..)

Figure 6.5. Timer detonating two bombs

1: tick() 2: detonate()
—>

timer : Timer bomb1 : Bomb

3: detonate()
—>

bomb2 : Bomb

Messages from the outside are usually shown with no originator.
Note: MagicDraw does not allow this. We have to use an empty class.

Practice: Assume the following class diagram and the sate given in the following object diagram

Figure6.6. A TV with a Remote and Tuner

Remote TV Tuner
-tv -tuner}_channel : int
+channelUp() +channelUp()
+channelDow n() +channelDow n() +setChannel(channel : int)
+getChannel() : int

: Remote myTv:TV tvTuner : Tuner
tv=myTv tuner = tvTuner channel =60

Assume the user presses the channel Up button on the remote. Show acommunication diagram of what
happens.

» You will need 3 links (one going to nowhere)
* You will need 5 messages (4 calls + 1 return message)

Possible Solution:

31

Messages

Figure 6.7. Communication diagram for TV

1.1.1: getChannel(=)
1.1: channelUp() —
1: channely > : :
p() - Remote myTv:TV I p— tuner : Tuner
1.1.1.1: 60
E

1.1.2: setChannel(channel=61)

The roles of objects in messages

Objects may be

* the sender of amessage (in C++ / Java: not available to the target)
* thetarget of amessage

* pointed to by avariable (attribute) within another object

* pointed to by an argument passed back and forth in a message

Objects can play all theserolesin their lifetime. However, some objects tend to aways receive, while
others aimost always send.

Sender and Target are dependent on the message!

Pure OO (e.g. smalltalk) has only objects, no data. Even things like Integer are an object in smalltalk!
However, in C++ we have to distinguigh between object and data. Data may

* becontained in avariable
* be passed back and forth as arguments
* not be the sender of a message

* not be the target of a message

Types of messages

There are 3 types of messages that an object may receive: informative messages, interrogative
messages, and imperative messages.

I mportant

informative message An informative message is a message to an object that
providesthe object with information to updateitself. (Itisalso
known as an update, forward, or push message.) It isa"past-
oriented" messagein that it usually informsthe object of what
has already taken place elsewhere.

Example: emplyee.gotMarried(marriageDate: Date, toWhom:Person).
Most "setter" methods fall in this category.

An informative message tells an object something that's happend in the part of the real world
represented by that object.

I mportant

interrogative message An interrogative mesaage is a message to an object
reguesting it to reveal some information about itself. (It is

32

Messages

aso known as a read, backward, or pull message). It isa
"present-oriented” message, in that it asks the object for
some current information.

Example: hom1.location message asks hom1 to tell us the location

most getter messages fall in this category.

I mportant

imperative message An imperative message is a message to an object that requests
the object to take some action on itself, another object, or even
the environment around the system. (It isalso known asaforce
or action message.) It is a"future-oriented" message, in that it
asksthe object to carry out some action in theimmediate future.

Example from the hominoid: homZl.advance().
Thiskind of action usually has some (more or less) complicated algorithm behind it.

Example: hom1.goToL ocation(square: Square, out feasable: Boolean) would haveto find away to that
location first...

Real-World example: robotL eftHand.goToL ocation(x,y,z:Length, thetal, theta2, theta3: Angle) would
ask arobot arm to actually move.

Example from the bomb:
* timer.tick() may tell the timer that another second has passed. Thisis an informative message.

* timer.setTime(time:int) sets the timer to a certain value. Thisis an informative message. may also
be imperative (if something else happens, like the timer starts)

» bomb.detonate() is called when the timer is expired. Thisis an imperative message.

Practice: Classify each one of the 4 messages from the earlier TV example (in this case the return
doesn't count)

1. channelUp() (user -> Remote) imperative (demand action) / informative (real-world -> computer)
2. channelUp() (Remote -> TV) imperative (demand action)

3. getChannel() (TV -> Tuner) interrogative (need to know information)

4. setChannel() (TV -> Tuner) imperative (demand action)

* A procedural progam consits of a set of instructions

» An object oriented program consists of a set of messages between objects

Book: Chapter 1.5

33

Chapter 7. Classes

Whenever we excutethe"new" command on aclassweinstanciate an object that isstructually identical
to every other object created by the "new" statement on the same class.

Example: new Hominoid() creates an instance that is stucturally identical to every other new
Hominoid().

Structurally identical means: same operations and variables

I mportant

class A classisthe stencil from which objects are created (instantiated). Each object has
the same structure and behavior as the class from which isisinstantiated.

If object obj belongs to class C we say "obj is an instance of C."
There are two differences between two objects of the same class:
 Each object has a different handle
 Each object will probably have adifferent sate (= values for its variables)
The difference between objects and classes:
A classiswhat you design and program
» Objects are what you create (from aclass) at run-time
Architecture: Classisthe blueprint, object is the house.
A class may spawn 3, 300, 3000, alot of objects. A class resembles a stencil: Once the shape of the
stencil is cut, the same shape can be traced from it thousands of times. All of the tracings will be
identical (but still different objects).
But why bother?
L ook at the memory regquirements: Lets assume that an object of aparticular class has
» 5variablesthat require 2 bytes each = 10 bytes
» 4 methods that require atotal of 400 bytes
« ahandle requiring 6 bytes *
Thismeans atotal of 416 bytes required for that object.

Now lets assume we have three objects of that class:

Classes

Figure7.1. Three objects of the same class and their memory requirements

objectl object2 object3
methodA methodA methodA
| var W l
methodB methodB methodB
var
methodC methodC
methodC —
methodD methodD methodD

Now each one of them requires 416 bytes, making atotal of 416 * 3 = 1248 hytes, right?

No! Because all of these objects are of the same class they are structurally identically, they may share
the common code, which is the methods. (Each object has its own handle, and its own values for the
variables, so they can not be shared)

So by sharing the actual code, which isthe largest portion in most cases, we are able to save big!

L ets assume we now have 15 instances:

Figure7.2. 15 objects sharing the same class

o e o 0 . o - B "° 9 = - 1
b b b b b b b b & b b b b b
] j I = j j j i j i
e e e e e e e e e 2 e e e e 1
¢ ¢ € e c -~ c C c . c c c < |
t ot = £t ;’cf = t . E l
. B B B & B = B .=
method A varV [varV [varV [varV | varV | varV [varV | varV | varV | varV | varV | varV | varV | var’¥
£ varW [varW [varW [varW [varW [varW | varW | varW | varW | varW | varW | varW | variv’
thodB varX | varX | varX | varX | varX | varX | varX | varX | varX | varX | varX | varX | varX
) varY | varY | varY | varY | varY | varY | varY | varY | varY | varY | varY | varY | var¥
thodC varZ | varZ | varZ | varZ | varZ | varZ | varZ | varZ | varZ | varZ | varZ | varZ | varZ
e Fandic|nandicjhandlelhandicjhandielhandle|handle|handldhandlghandld handlehandlehandle]
methodD
&= 5 1 =B § § § ® § B ®»
400 bytes bytes bytes bytes bytes bytes bytes bytes bytes bytgs bytes bytes bytes bytes
bytes g e
We need:

* 400 bytes for the class methods (* 1)
» 16 bytesfor handle + values (* 15)
Making atotal of 400 + 16 * 15 = 640 bytes!

Practice: Assume a class with the following memory requirements:

35

Classes

» methods: 500 bytes

 variables: 96 bytes

» handle: 4 bytes

How much memory is used for 1 instance? for 5 instances?
600 bytes/ 1 and 1000/ 5

So far we have talked about so called "object instance operations' and "object instance variables'.

Class operations and class attributes

Object instance operations and object instance variables work with instances of classes.

What happensif we want something where we know we have only one of it? Do we need to create an
object for every "helper” class and passit around to every other object?

No, we can use class operations and class variables instead!

They work much like in procedural programming (there can be only one), but are still encapsulated
ina"class'.

Object instance and class operations/ attributes can even be mixed in one class.
Class operations are used:

* When thereis only one of acertain thing.

* When thereis no state.

Example of only one: Bank in Monopoly (guess what we're doing in next lab :)). Screen on the
computer.

Example of no state: Utility functions, such a math functions, helper functions, etc. but also creation
functions.

Class operation can only work with class attributes (they have no instance)!
Object instance operations can work with class attributes or object instance attributes.

You can call class operations without creating an instance first! So anyone can send a message to a
class operation without having a handle.

Sometime the notion "static” is used for class attributes and operations. (MagicDraw uses the flag "is
static" for class attributes and operatons, C++ and Java use the keyword "static")

Notation in UML: In UML class attributes and operations are underlined.

36

Classes

Figure 7.3. Grid for the Hominoid, implement completely static since there is
only one

Grid

Practice:
Assume a game of scrabble. The game has exactly one bag. The bag contains abunch of |etters (char)

and provides an operation for retrieving a letter, and one to check if the bag is empty. Draw a UML
diagram for the class " ScrabbleBag".

Figure7.4. Solution for Scrabble

ScrabbleBag

Example: Using static methods for creation of instances:

37

Classes

Figure7.5. A color classwith static methodsfor creation

Color

+red : float
+green : float
+blue : float

+geiTexas TechRed(] - Color
+getTexasTechBlack() : Color

Practice: Draw a UML diagram of a"Location” class. It should provide attributes for x and y and a
class operation for "get origin”

Figure 7.6. Example solution for L ocation class

Location

-X 1 int
-y @ int

+getX() : int
+getY () : int
+setX(new X : int)
+setY(newY :int)

+getOrigin() : Locat

Book: Chapter 1.6, 3.6

38

Chapter 8. Inheritance

The problem: You write a class C and later discover a class D that is amost identical to C but has
some extra attributes and operations.

You could just duplicate C's operations and attributes into D, but: This is extra work and make
maintenance difficult

Better solution: Ask class D to re-use operations/ attributes of C. Thisis called inheritance.

I mportant

inheritance Inheritance (by D from C) isthefacility by which aclass D hasimpliclity
defined upon it each of the attributes and operations of class C, asif those
attributes and operations had been defined upon D itself.

superclass Cisasuperclassof D.

subclass D isasubclass of C.

Through inheritance, objects of class D can make use of attributes and operations that where defined
inclass C (and D).

Inheritance allows to build software incrementally, allowing you to:

* First build classes for the generic case

» Then build classes for special cases that inherit from the generic classes.
Example:

Class Aircraft which defines an operation turn() and an instance attribute course. This works well for
theall air crafts.

Figure8.1. UML diagramm for class Aircraft

Aircraft

-course

+turn(new Course) : boolean

However, there may be specia aircraft, such as glider. A glider need to know its course and be able
to change it, but it also needs special operations (e.g. release towline) and specia attributes (e.g.
isTowlineAttached).

We can have Glider inherit from Aircraft. Then Glider will have al its instance attributes and
operations and the ones from Aircraft.

39

Inheritance

Figure8.2. Glider inheriting from Air craft

Aircraft

-course

+turn(new Course) : boolean
JAY

Glider

-tow lineAttached : boolean

+releaseTow line()

The glider now has the attributes:

* course

* towLineAttached

and the operations:

 turn()

* releaseTowling()

Notes for the UML notation:

* inheritance is shown with a directed arrow.

« the arrowhead must be an unfilled triangle!

MagicDraw callsthis"Generalization".

Practice: Model a cable box and advr cable box. The cable box has a current channel, which can be
set with an "channelUp" and a" channelDown" button. A dvr cable box has all the features of aregular
cable box, but also hasa"record" button and has a certain number of minutes left for recording. Draw

aUML diagram for both classes, using inheritance.

But letslook again at the aircraft / glider example and some sample code:

40

Inheritance

Aircraft

-course

+turn(new Course) : boolean
JAY

Glider

-tow lineAttached : boolean

+releaseTow line()

var ac: Aircraft := Aircraft. New,
var gl: dider := dider.New,

ac. turn(newCourse, out turnCk);
gl . rel easeTow i ne;
gl . turn(newCourse, out turnCk);
ac.rel easeTow i ne;

Or the same in C++ notation:

Aircraft *ac = new Aircraft();
Gider *gl = new Gider();

turnCk = ac- >t urn(newCourse);
gl - >rel easeTow i ne();
turnGk = gl ->turn(newCourse);
ac->rel easeTow i ne();

The object pointed to by ac receives the message "turn", which causes it to apply the operation
turn(). Since ac is an instance of Aircraft, it will use the operation turn() defined on the class
Aircraft.

The object pointed to by gl receives the message "releaseTowling” which causes it to apply
the operation releaseTowling(). Since gl is an instance of Glider, it will use the operation
releaseTowling() defined on the class Glider.

The object pointed to by gl received the message "turn", which causes it to apply the operation
turn(). Glider does not define turn(), but since Aircraft is a superclass of Glider, it will use the
operation turn() defined on the class Aircraft.

Thiswill not work! ac refersto an instance of Aircraft, but Aircraft does not have an operation
"releaseTowling". Inheritance does not help in this case!

Distinction between object and instance;

41

Inheritance

Any object isan instance of its class and of al of its classes superclasses!
» acisan object of class Aircraft. ac is an instance of class Aircraft.
» gl isan object of class Glider. gl is an instance of the classes Aircraft and Glider.

Compare to rea world: If you own a glider, you own an aircraft at the same time (even though it is
the same object).

is-a relationship: Inhertiance is usually useful whenever an is-a relationship can be used. Example:
Every glider is-an aircraft.

Common mistake: Using inheritanceinstead of attributes. For example, every Hominoid hasalocation.
So why not just inherit from Location? Then Hominoid would have all the attributes and operations
needed for it's location, right? Technically - Yes. Logically, is every Hominoid also a Location? No!
A Hominoid has alocation. Therefore, also technically feasable thisis bad design!

Inheritance can span multiple levels. Example: FlyingThing, AirCraft, Glider. Every glider is an
aircraft and aflying thing. Every aircraft is aflying thing.

Every class may have multiple subclasses! Example: aBoing 747 isan aircraft, a Glider isan Aircraft.

Figure 8.3. Larger example of inheritance

FlyingThing

T

Aircraft

T 7

Glider Boing747

Practice: Draw alarger inheritance diagram (use short class notation), for the classes:
* Motorcycle

» Helicopter

+ StreetVehicle

» Car

* Aircraft

* Plane

» Vehicle

42

Inheritance

Figure 8.4. Example solution for vehicle inheritance

Vehilce

StreetVehicle Aircraft

Motorcycle Car Helicopter j 1 Plane

Multiple Inheritance

So far we have seen single-inheritance: Each class had only one direct superclass. However, each class
could have multiple subclasses. This can be shown in an inheritance tree (The example we have seen
so far).

But can aclass also have multiple (direct) superclasses? Yes, thisis called "multiple inheritance”.

Figure 8.5. Example of multipleinheritance

Aircraft PassengerVehicle

Boing747

Warning! Multiple inheritance can cause mayor design problems (= headaches). Why? what happens
if operations or attributes "clash"?

Example: Assume Aircraft defines a "size" attribute which defines the length of the aircraft in feet
(float). PassengerVehicle defines a "size" atrribute which defines how many passenger fit in this
vehicle (int). When Boing747 inherits the "size" attribute, what does it mean?

As a matter of fact, multiple inheritance can cause so many problems that some languages forbid
it! C++ and Eiffel alow it, Java, Delphi, ObjC and Smalltalk do not. (Java/ Delphi / ObjC have a
workaround with interfaces / protocols, but more about that later).

Multiple inheritance, if used, should be used very cautiously! Only useit if thereis no other way!

43

Chapter 9. Polymorphism

Polymorphism comes from greek:

e poly = many

e morph =form

Example: Odo from "Deep Space Nine"

In OO there are two definitions:

I mportant

Polymorphism 1. Polymorphism is the facility by which a single operation or attribute
name may be defined upon more than one class and may take on
different implementations in each of those cases.

2. Polymorphism is a property whereby an attribute or variable may
point to (=hold the handle of) objects of different classes at different
times.

So what does that mean?

Example: Imagine aclass for polygons:

Figure9.1. A classfor polygons

Polygon

-points : Location [*]

+draw ()
+getArea() : float

Sidenote: Remember derived attributs? areais a derived attribute.

If wewhereto look into the implementation of getArea() iswould haveto be very very very very very
complicated to support any polygons.

Now how about some specia cases of polygons?

Polymorphism

Figure9.2. Polygon with some subclasses

Polygon

Triangle Rectangle Hexagon

getArea() for Triangle and for Rectangle are very easy (for Hexagon it is still complicated). Can't we
just redefine them for the subclasses with some more efficient algorithms? Y es, we can!

Figure 9.3. Polygon with subclasses that overwrite methods

Polygon

-points : Location [*]

+draw ()
+getArea() : float

Triangle Rectangle Hexagon

+getArea() : float +getArea() : float

Now we can implement an easier version of getArea() for Triangle and for Rectangle. We say
"Rectangle overrides the method getArea()"

I mportant

Overriding Overriding is the redefinition of a method defined on a class C in one of
C's subclasses.

Rules for overriding:

» Methods can be overridden

45

Polymorphism

Attributes can never be overridden

In C++ (and most other languages, e.g. Java) overridden methods must have the exact samesignature
(=name, capitalization, parameter list)

In C++ (but not in most other languages) overridden methods may have a different return type
(although you should use that with caution)

 In C++ overridable methods have to be marked with the "virtual" keyword (but more of that later)
Practice: Show an inheritance diagram of the classes "Aircraft”, "Glider" and "Boing747". Assume
that every aircraft has an operation "startEngines()". Boing747 will just use that operation. Glider will
have to override it, since it has no engine.

Let's assume the following code:

t woDShape. get Area; // Book's notation
t woDShape- >get Area(); // C++ notation

We may not know which algorithm gets executed, this depends on the Class that the object
two2D Shape belongs to. We have to look at several cases:

1. twoDShapeis an instance of Triangle, the operation getArea() from Triangle will be executed.
2. twoDShape is an instance of Recangle, the operation getArea() from Rectangle will be executed.

3. twoDShapeisaninstance of Hexagon. Hexagon has no getArea() function, so the onefrom Polygon
is used.

4. twoDShape is an instance of Polygon, the operation getArea() from Polygon is used.

5. twoDShape is an instance of another class C that is not related to Polygon. Since that class does
not have an operation getArea() we will get an error (compile-timein C++)

But how can | not know which class an object bel ongs to???

The answer is: Since every object is an instance of al of its superclasses, we can use it every place
where we can use the superclass (Assignments, as parameters)! Here are some examples:

var p: Pol ygon;
var t: Triangle := Triangle. New,
var h: Hexagon : = Hexagon. New;

i f user sayas K
then p : =1t

else p:=nh
endi f;

p.getArea; // P may be a Triangle or a Hexagon obj ect

Or in C++ notation:

Pol ygon *p;
Triangle *t = new Triangle();
Hexagon *h = new Hexagon();

i f (userSai dCk)
p =t

46

Polymorphism

el se
p=h;

p->getArea(); // P may point to a Triangle or a Hexagon
Even though we assign an object of class Triangle (or Hexagon) to an object handle for Polygons, the
object will still keep its class, so it will still execute the getArea() function from Triangle (or Polygon

in the case of Hexagon)

In classical programming we would need to test of what type p really is and have some complicated
switch-statement.

Advantage: We can now add new classes that are subclasses of polygon and overwrite getArea()
without changing any of the existing code!

The general declaration "var p:Polygon" (Polygon *p) is a safety restriction. It makes sure that:

 p can only hold handles to objects of class Polygon or its subclasses. (e.g. we cannot assign it an
object of class"Consumer")

» we can only execute the operations defined on Polygon, or we will get a compiler error.
The operation getArea() is an example of the first definition of polymorhpism.

The variable p is an example of the second definition of polymorphism.

Practice:

Assume the following classes:

Figure9.4. Inhertiance diagram for Aircrafts

Aircraft

+startEngines()

Boing747 Glider

+startEngines()

47

Polymorphism

And the following code:

Aircraft *a = new Aircraft();
Boi ng747 *b = new Boi ng747();
Gider *g = new Gider();
a->start Engi nes();

b- >st art Engi nes() ;

g- >start Engi nes();

a=g;
a- >start Engi nes();

a = b;
a- >start Engi nes();

which startEngines() functions are called in this code? Given an answer for the numbered lines.
Sidenote: Here we are losing an object, which one?

How does polymorphism work? Through dynamic binding:
I mportant

dynamic binding Dynamic binding (or run-time binding or late binding) is the
technique by which the exact piece of code to be executed is
determined only at run-time (as opposed to compile-time)
The environment inspects the class at the last possible moment: at run-time, when the message is sent.

Do not confuse overriding with overrloading. Remember overloading from the intro class? We had
function overloading and operator overloading.

overloading overloading of a name or symbol occurs when several operations (or operators)
defined on the same class have that name or symbol but different parameters. We
say the name or symbol is overloaded.

Overriding: Superclass declares operation, subclass overrides it. Example: Aircraft declares
startEngines(), Glider overrides startEngines().

Overloading: In the same class, but with different arguments! Example: Aircraft defines startEngines()
and startEngines(towWhichPower:float).

Overloading is done by signature and can actually be checked at compile-time.

Some people (including me) sometimes call overloading polymorphism but that is incorrect! Only
overriding is polymorphism.

Book: Chapter 1.8

Abstract operations

No we can override methods and declare superclasses with operations.

But what if an operation does not make sense on a superclass? What if the superclass is actually
"useless” and just used for polymorhpism?

48

Polymorphism

Figure 9.5. Example operation on vehicles

StreetVehicle

+getCurrentSpeed() : float
4 A

Motorcycle

Car

+getCurrentSpeed() : float +getCurrentSpeed

In this example, we would never instantiate an object of class "StreetVehicle". We would use the
class StreetVehicle only to combine Motorcyle and Car. We would instantiate objects of class Car or
Motorcycle and use them as StreetVehicle. The importance of every StreetVehicle is that is has an
operation getCurrentSpeed() !

Then why even bother implementing getCurrentSpeed() on StreetVehicle? Instead, we can make it
an abstract operation.

I mportant

abstract operation An operation is lacking a a workable implementation.
Normally, a descendent class will override this inherited
abstract operation with its own concrete operation

Unfortunately, when a class has at least one abstact operation we will also need to make the class
abstract

I mportant

abstract class A class from which objects cannot be instantiated (normally because
the class has one or more abstract operations). An abstract class is
usually used as a source for descendant classes to inherit its concrete
(nonabstract) operations.

The reason: Would we instantiate StreetVehicle and call its operation getCurrentSpeed(), but
Streetvehicle does not implement it, we don't know what to do.

Abstract classes and operations are shown in UML initalics.

49

Polymorphism

Figure 9.6. Vehicleswith abstract superclass

StreetVehicleV2

+getCurrentSpeed() : float
JA) JAY

Motorcycle Car

+getCurrentSpeed() : float +getCurrentSpeed() : float

Unfortunately you can not write italics on paper (you may be able to but | am not able to distinguish
your italicsfrom non-italics. Thereforeif you want to denote abstract classes or operationsin thisclass
on paper, you have to use the stereotype <<abstract>>. | do not want you to write things like "thisis
italics' or something, since that would not be correct UML!

Figure 9.7. Abstract object as done on paper

<<abstract>>
StreetVehicleV3

<<abstract>>+getCurrentSpeed() : float

The book uses an alternate notation. The use UML constraints (similar to stereotypes, but written in
{ }) to denote abstract classes on paper. They would write { abstract} .

While stereotypes go in front of the method / class names, constraints go after the the declaration.
Example: StreetVehicle { abstract} . See the book for an example.

Y ou may use the books notation if you like or the stereotypes notation! But deceide on either one and
do not mix them in the same diagram!

Book: Chapter 3.7

Practice: From the Vehicle example, draw an class diagram showing the classes Aircraft, Helicopter,
and Plane. Add an operation getCurrentHeight() that is only defined for Helicopter and Plane, but
specified on all Aircraft.

Pure abstract classes (interfaces) A class that has has no attributes and only abstract operations
iscalled a pure abstract class or interface.

Notes

50

Polymorphism

* A pure abstract class may be a subclass of one or more pure abstract classes. (but not of abstract
classes or regular classes).

* Since pure abstract classes define no attributes and only abstract operations they cause no problems
with multiple inheritance

To denote a pure abstract class, you may use the stereotype <<interface>> on the class name. If you

do your design on paper, thats enough. If you use amodelling tool you still haveto italicize your class
name and operations!

Practice: Draw a class diagram for the classes Chair, Table, Floor, and the pure abstract class Seat.
Seat defines an operation sitOn() that the other three classes override.

51

Chapter 10. Genericity

I mportant
Genericity Genericity isthe construction of aclass C so that one or more of the classes
that it usesinternaly is supplied only at run-time (at the time that an object
of class C isinstiated)
Problem:

Sometimes you want to write an class that supports "generic" types of classes.
Example: List of something. Provides the same operations, but takes different parameters.

Assume we have the following classes:

Figure 10.1. Two classesthat have nothing in common

Car Person

Unfortunately these two things have nothing in common. So if we want to provide a"Stack™ of cars
and a " Stack” of People, we'd have to implement two classes:

Figure 10.2. Two different stacksfor two different types

CarStackV1 PersonStackV1
-cars : Car [*] -people : Person [*]
+addCar(c : Car) +addPerson(p : Person)
+removeCar() : Car +removePerson() : Person

However, if we look at the functionality they provide, they are actualy very similar. As a matter of
fact, theimplementation of both would be very much the same. If wewould replace"Car" or "Person”
with amore generic term like "item", we get:

52

Genericity

Figure 10.3. Two similar stacksfor two different types

CarStackV2 PersonStackV2
-items : Car [*] -items : Person [*]
+addltem(i : Car) +addltem(i : Person)
+removeltem() : Car +removeltem() : Person

Please note, that the only difference between these two classesis now the class on which they operate.
One dtill has "Car", the other one "Person™. The actual implementation of the functions will now be
exactly the same!

So can we not make a class that somehow has a parameter of which class to operate on?

Yes, we can! (Thats the point of thislecture). These classes are called "Generic classes'.

Figure 10.4. A generic Stack Class

I?:Clas.5|
- -
GenericStack

-items : T [*]

+addltem(i: T)
+removeltem() :

UML Notation:

» A genericis"added on" as an extra box with a dashed outline

» Theformat isname: type

» You can use any nameyou like

» The name can be used inside that class like atype

* Inthisclass, type will always be "Class"

» Every class may have multiple generics, they each go on their own line.

Note for MagicDraw: In MagicDraw, Generics are called "Template Parameters”.

53

Genericity

We are now not only specifying one class, but actually a set of classes. Each individua class can only
use the data type provided! To use a particular class, we have to provide the template parameter.

Examplein C++:

CGeneri cSt ack<Car > *car Stack = new CGeneri cStack<Car>();
CGeneri cSt ack<Per son> *peopl e = new Ceneri cSt ack<Person>();

Then, using it is easy:

Car *c = new Car();

car St ack. addltem(c);

car St ack. addl ten(new Car ());
Person max = new Person();

Per son soneoneel se = new Person();
peopl e. addl t en(max) ;

peopl e. addl t en{ soneoneel se);

Until your data structures class, you will very likely not write generic classes, but you will use them.
C++'s Standard Template Library (STL) provides many very useful generic classes.

For everyone who misliked arraysin C++, there is the generic class "Vector". This class provides:
» af] operator for easy accessto its elements

* an operation to add new elements

 an operations to check the current size

* an operation to wipe out the contents

 an operation to check it is empty (convenience for size()==0)

* aresize operation

» and many more

Genericity

Figure 10.5. The STL class" Vector"

|;:Class |

]
rF . 1

Vector

+operatorC_ () : T
+push_back(element: T)
+size() :int

+clear()

+empty() : boolean
+resize(newSize :int)

Note: Everytime where we have multiplicity with a given maximum size, you will most likely use
static arrays in C++ (example: Car has 4 wheels)

Everywhere where we have multiplicity with a maximum size of * you will most likely use the
Vector<T> class.

So whenever you model:

properties : Property [*]

you would actually implement:
properties : Vector<Property>

Note for this class: Always use multiplicity in models, Vector<> in implementation. | do not want to
see Vector<> in your model!

Practice:
Draw an UML diagram for a generic class "Set". A set contains elements of a certain class. It should

provide operations to add an element, remove an element, check if the set is empty, and check if an
element already existsin the set.

55

Genericity

Set

+addBlement(element : T)
+removeGivenBement(element : T)
+removeAnyHBement() : T
+isEmpty() : boolean

+isinSet(element : T) : boolean

56

Appendix A. Summary

That'sit! If you understood these parts you've done well!

We covered chapters 1,3,4 and parts of 5 of the book.

57

Part Il. Object Orientation in C++

Table of Contents

Object Orientation iN CH+ OVEIVIEWcovuiiiii ean s Ix
O =S = T PP 61
ClasS AEfINITIONSieiei e e et e et e et e e e e et e eeeatn e eeee 61
WHhEre do thinGgS gO7 ..uien i e e e e e eans 64
Incomplete class deClarations.oiveuieiiii e 66
ClASSES VS, POD ...iiiiiieiiiii ettt 67
ODBJECt NANAIES ... e e 68
Dynamic object handlEScoeuiiiiic e 68

Static ObJECt NANAIESuiee e 71

Static Member VariableSuuiiii e 73
Static Member FUNCLIONSuiiiiiii e e et e e e e 73
INHNE MEMDEr FUNCLIONSouviiiiiiiie e e e 75

L1 1SRN 76

12. CoNSLrUCtors and DESITUCLONSuuuueiiiii ettt e ettt e et e et e e et e eeeaae s 78
CONSITUCTONS ...ttt ettt ettt ettt et et e et e et e et b e e e e e et s e et e eenaeenes 78

(D =0 O g 1 o (o PP 78
Constructors With ParamELEr'Svvvve e e e e 80

ThE COPY CONSEIUCIONivvieeie e e e e e e e e e e e e e et e e ean e eeenns 8l
(DS 1 100 (o] £ T PP UPPT PP 82

G o] 1=) = Lot U 88
RV L4 187 U PTTSPPPPRPPPIN 88
Base constructors and ProteCtedovveeiiiiiiieii e 91
Calling hase dESITUCLONSvevi i e e e e e e eaneees 92
Calling Specific BaSe CONSITUCONSuuuiiiiieiii i eeeieeee e e e e e e et e e e e e e e et e e eeaneees 93

PUre Virtual / ADSITECEooveeee e 94
Something completely different: VECIOrcoovviiiiii e 95
Multiple Inheritance and virtual iNheritanCecccoveviiiiiii e 102

14, ACCESS SPECIHTIEIS uvuiiii it e e e e e e e e 104
01U o 104
010 = 1= o 104
0T (N 104
FEIONAS ..ot 104

T 1= 10T = 1 106
G I 0= I PP 109
L0001 =] 1= PP 109
SEOOUENCESuieeeei ettt et et et et e e e e e et e et e e aa e e e et et e e e e e e e e e e 109

1S = 0] £ TP UPPTRPPTRPN 112
ASSOCIALTIVE CONLAINETSiieeei e e et e et e et e et e et eeeran s 114

L= (0 g = =0 (0] == PN 115

N Ko T 11 114 116

59

Object Orientation in C++ Overview

In this part, we will look into C++ and its implementation of Object Orientation. For this chapter we
will mostly follow chapter 6 of C++ in anutshell.

Chapter 11. Classes in C++

Class definitions

Before we can use classes, we have to define them. Assume the following simple class:

Figure11l.1. Hello World Class

HelloV1

+formal : boolean

+greeting()

In C++ there are two partsto every class:
+ Class definition

 Classimplementation

I mportant

Class definition The class definition defines the structure of the class. It
defines the class name, member variables and member
functions.

Class implementation The classimplementation specifiesthe behavior of the class.

It gives an implentation for its member functions.

Warning to al tha have used Java before: In Java they are both together, in C++ they have to be
separated!

Sidenote: Asyou should be able to guess, pure virtual classes (interfaces) have no implementation.

But back to the class. The first step is redefining it for the actual implementation (we learned some
of that earlier).

e Use getters/ settersinstead of public attributes
» Use Vector<> for multiplicity

In an actual project we would probably do this step in our head. But it doesn't hurt do to on paper:

Figure 11.2. Hello redefined for implementation

Hello

-formal : boolean

+greeting()
+getFormal() : boolean
+setFormal(f : boolean)

61

Classesin C++

Although it is technically possible and perfectly legal to declare public attributes in C++, it is not
legal inthisclass! For all projects, designs, implementations, etc. you do in this class you have to use
private attributes!

The example here is intentionally simple. In reality we would probably declare a default value for
formal, but we need to know about constructors first (in one of the next classes).

Given the definition in UML we can now trandate it into C++.
Example for a class definition:

class Hello
{ .
private:
bool formal
public:
voi d greeting();
bool getFormal ();
voi d set Formal (bool f);

};

Letslook at the different parts:

The class definition starts with the keyword "class' followed by the class name, followed by an
open brace (similar to structs).

Visibility modifiersin C++ are a given as the keyword (private or public) and then a colon (:).
Note that there is no "boolean™" datatype in C++, it is called "bool". Other than that an attribute
defintion is similar to avariable definition.

Visibility modifiers count for more than just the next definition. They count for every definition
from that point onward until the end of the class (unlike Java).

A function with no return has the "void" return type. Member function definitions look like C
++ prototype declarations.

Remember, in C++ it istype, space, name

The class definition ends with a closed brace and a semicolon! Do not forget the semicolon!
(Thisisthe same as with structs).

Other notes

Order Asin UML, in C++ it is convention to declare all variables first, then all member
functions.

Indentation Usually the class definition starts with no indentatation. Visibility modifiers and

the closing brace are on the same level as the class definition. Member attributes
and operations are indented.

As you can see a C++ class definition shows the exact same thing as a UML class definition. This
is not a coincidence. There are even programs that can produce one from the other. However, these
arevery expensive.

Practice:

Write a C++ class definition for this class:

62

Classesin C++

Figure 11.3. Polygon class

Polygon

-points : Location [*]

+draw ()
+getArea() : float

Hints: You will not need any getters / setters here. The corrent type for "points’ would be
"Vector<Location>".

We have now defined a class and its interface. But now we have to give actual implementations for
the defined methods.

Letslook at the Hello class again:

Figure 11.4. Specification for hello

Hello

-formal : boolean

+greeting()
+getFormal() : boolean
+setFormal(f : boolean)

We have defined the class

And its attributes.

What is missing is the methods.

Fortunately, implementing the methods is much like we've seen in implementations before:

voi d Hello::greeting()

if (formal)

cout << "Hello, nice to nmeet you!" << endl;
el se

cout << "What's up?" << endl;

The "Hello::" is borrowed from namespaces. In this case, a class is somewhat like a namespace
(although a different thing)

The header line of amethod implementation is:
Return data type (void if no return value), class name, colon-colon (::), method name, parameters

The body of amethod is exactly the same aswe learned in earlier.

63

Classesin C++

In the method, we can make use of all attributes of the same class asif they were global variables. In
the example given we can use "formal" because it is defined inside the class "Hello" and our greeting
method is for the class "Hello".

Practice: Assume the following class definition:

cl ass Poi nt

{

private:
float x;
float v;
publi c:
float distanceFrontrigin();
i
Give animplementation for the distanceFromOrigin function. Note: the formulaisroot(x"2+y”~2) (our
course thisis NOT C++ notation).

Where do things go?

Now that we know how to define aclass, and how to implement its methods, letslook at where things
go.

Note: These things are conventionsin real life, but for me (and that means for you in this class) they
are unbreakable rules!

Figure 11.5. Overview of a Classin C++

Class

<<artifact>> [} <<artifact>> [
Header File (.h) Source File (.cpp)

Rules:

» The class defintion belongs in a header file (.h), that has the exact same name and capitalization
of the class. Example: Hello.h

» The class implementation belongs in a source file (.cpp) that has the exact same name and
capitalization of the class. Example: Hello.cpp

» The header file will be guared against multiple inclusion with the #ifndef ... #define .. #endif
construct

» The sourcefile will alwaysinclude its own class definition (e.g. #include "Hello.h")
Thisway, there are always 2 files for each class (exception: pure virtual classes).
Note: If you use eclipse you can have ecplise create these files for you (say New / Class)

To start the program, we still need a main() function. This function should go into its own file,
preferably something like "main.cpp”. In good OO programs this function is very short! Example:

#i ncl ude " Soned ass. h"

Classesin C++

int main()

{

Soned ass *nyl nstance = new Soned ass();
nyl nst ance->start();

del et e nyl nst ance;

return O;

}

Remember to always include things where there are used!

Because | love graphics, here's another graphic showing the same thing:

Figure 11.6. A C++ program

C++ Program

]]]
Class Class Class
<<artifact>>D
main.cpp

But enough theory, here is a complete example:

Example 11.1. Hello.h

#i fndef HELLO H_
#define HELLO H_

class Hello
{ .
private:
bool formal
publi c:
void greeting();
voi d set Formal (bool f);
bool getFormal ();

3
#endif /*HELLO H */
Example 11.2. Hello.cpp
#i nclude "Hell o. h"

#i ncl ude <i ostreane
usi ng nanespace std;

65

Classesin C++

voi d Hello::greeting()

if (formal)
cout << "Hello, nice to neet you!" << endl;
el se
cout << "What's up?" << endl;
}
voi d Hell o:: set Formal (bool f)
{
formal = f;
}
bool Hell o:: get Formal ()
{
return formal;
}

Example 11.3. main.cpp

#i ncl ude "Hel |l o. h"

int main()

{
Hello *h = new Hel l o();
h- >set For mal (true);
h->greeting();
del ete h;
return O;

}
Incomplete class declarations.

Problem: Two classes reference each other.

Figure 11.7. Example of two classesreferencing each other

0.8 1

Here'safist attempt at an implementation in C++

// this is Bonb.h
#i ncl ude "Ti ner.h"

cl ass Bonb

{
private:

Ti mer *tiner;
}

// this is Tinmer.h
#i ncl ude "Bonb. h"

66

Classesin C++

class Tiner

{

private:
Bormb *bonb[8] ; /1 This works due to what is
/] stated about the * |ater

}

Alternate notion:

// This is an alternate Tiner.h
#i ncl ude " Bonb. h"
#i ncl ude <vector>

cl ass Ti ner

{
private:

vect or <Bonb*> bonb; // Mich safer :)
}

Discussion: What seems to be the problem? How could you solve this?
Answer in C++: Incomplete class definitions.

Works when we only need to know that there is a class with a certain name, but do not need to know
any details (like in the class definition / header file).

In this case we can tell C++ that thereis a class with that name, and that it will be defined elsewhere.
Notion: class classname semicolon. Example: class Timer;

Example:

[/l this is Bonb.h

cl ass Tiner;

cl ass Bonb

{
private:

Timer *tinmer;
}

// this is Tinmer.h
cl ass Bonb;

cl ass Tiner

{
private:

Bonb *bonb[8] ;
}

Classes vs. POD

POD = plain old data
Classes that have only public attributes are POD.

By default (with no visibility given) members are public.

67

Classesin C++

struct and class are the samein C++.
Convention: we use struct for POD and class for everything else.
Example:

struct Locati onAsPod {
int x;
int vy;
b

cl ass LocationAsC ass {
private:

int x;

int vy;
public:

int getX();

voi d set X(newX:int);

int getY();

voi d setY(newY:int);
i

Object handles

For the following examples we will assume a simple Location class:

class Location {
private:

int x;

int vy;
public:

int getX();

voi d set X(newX:int);

int getY();

voi d setY(newY:int);
1

Dynamic object handles

In most cases we want to use dynamic object handles.
Creating an object:

new Location(); // or
new Locati on;

Please note: In this case the parenthensis () are optional .
Thiswould create the object and then immediately looseit.
Assigning that new object to avariable for use:

Location *here = new Location();

Now the variable "here" holds a handle to the object.

To access member functions/ variables, we use the "->" operator:

her e- >set X(10) ;
her e- >set Y(5);

68

Classesin C++

cout << here->getX() << " " << here->getY();
To pass object handles to other methods, they have to take object handles as parameters.

cl ass Hom noi d

{
publi c:
goToLocati on(Locati on *target);

b

Hom noi d *bob = new Hom noi d();
Location *here = new Location();

bob- >goToLocat i on(here);

To return object handles, use the pointer reference data type:

cl ass Homi noid

{
public:
Locati on *whereAreYou();

}1
Hom noi d *bob = new Honi noi d();

Location *bobsLocati on = bob->whereAreYou();

Practice:

Define a class "Computer” that contains an attribute "cpu” of type "Cpu". Show the class definition
with the attribute cpu and its getter and setter method. Show the implementation for the getCpu() and
setCpu() functions.

cl ass Comput er
{

private:
Cpu *cpu;
publi c:
voi d set Cpu(Cpu *);
} Cpu *get Cpu() ;

;/éi.d Conput er: : set Cpu(Cpu *newCpu) {cpu = newCpu;}
Cpu *Conputer::getCpu() { return cpu; }

About the position of the *:
In C++, the* can either be with the classname OR with the attribute / function name:

Location *pos; // is the sanme as
Location* pos; // is the sane as
Location * pos; // is the sane as
Locat i on*pos;

69

Classesin C++

Location *whereAreYou(); // is the same as
Locati on* wher eAreYou();

So logically it would make more sense to put the * to the class name, since we're defining areference
to an object and not to the variable.

Theonly case wherethisisnot equivalent iswhen we declare multiple variables/ attributesin oneline.
Location* vy, z;
Here, we would assume this to be equivalent to:

Location* y; // THIS IS NOT THE CASE
Location* z; // THIS IS NOT THE CASE

Unfortunately it is equivalent to:

Location* vy;
Location z;

Therefore you have two choices:
* Either always put the * with the attribute / variable name
» Or never declare multiple attributes/ variablesin one line.

Since I'm lazy, | chose the first solution. You may pick whichever one you like, but be consistent
within the same project!

Disposing of objects:

Since we created new dynamic object, we have to dispose of them properly:
Location *loc = new Location();

del ete | oc;

We use "delete” aslearned in an earlier class with pointers.

Practice:

Go back to the Cpu/ Computer exampl e. Create oneinstance of each. Call your setter method. Dispose
of both objects properly.

Warning: In OO it is sometimes where complicated to find out WHERE or WHEN to del ete objects.
Two problems:

» Forget to delete

» Delete multiple times

Forget to delete: Sometimes we can not delete an object immediately, but someone else has to do it.
In this case, we may forget to delete.

Example:

cl ass Homi noid
{
public:
Locati on* dreanPl ace();

70

Classesin C++

}
Locati on *Hom noi d:: dreanPl ace()
{
Location *I = new Location();
| ->set X(1);
| ->setY(1);
return |;
}

Hom noi d *bob;

Location | oc = bob->dreanPl ace();
/1 Do sonmething with |oc

/1 now | oc shoul d be del et ed.
delete loc; loc = null;

But why can't we always del ete?
Because then we may run into the next problem, del eting to many times/ in thewrong place. Example:

cl ass Homi noid

{

private:
Location *I;

public:
Locati on *getLocation();

Locati on *Homi noi d: : get Location() {
return |;

}

Homi noi d *bob;

Location *l oc = bob->getLocation();
/1 do sonething with | oc;

// loc should not be deleted, bob still needs it!

Unlike most other languages (ObjC, Java, ...) C++ does not have a good solution for this problem.
The only solution is very very very very careful programming and good documentation.

Static object handles

So the whole deleting gives us headaches. Can't we just use static data members instead? Aren't they
just much easier?

They are easier, aright, because they get automatically allocated and del eted!
Example:
{

71

Classesin C++

Location |I; // | gets autonatically allocated here
I .setX(5);
| .setY(7);

} /1 | gets automatically deleted here when it runs out of scope

Unfortunately, whenever we use | it gets copied. Here'salarger example:

voi d advance(Location I) // This would usually be somewhere in some cl ass

{
| .set X(I.getX()+1);

}

Location z;
z.setX(1);
z.setY(1);

advance(z);
cout << z.getX(); // Prints 1

We can get around the problem here by using pass-by-reference. However, this only works in some
cases. Imagine a setter method:

voi d Homi noi d:: setlLocation(Location &)

{

Myl ocation = 1; // would still copy

}

Also please note: Static object references can not be used with incomplete class definitions! Y ou have
to have either afull class definition or a dynamic object reference (pointer).

Conclusion:

» Static references are easier

» Unfortunately they may copy objects
* Usewith caution!

* You need to practice with new and delete anyways, so you may just use dynamic handles
everywhere,

A good rule:

Use static object references when you

» Usethat object in only one function

» Never passthat object as a parameter.
Example: Main function

int main() {
Game g;

g.play();
return O;

}

We have aready used some classes with static references:

e dringisaclass.

72

Classesin C++

 ifstreamisaclass.

» ofstreamisaclass.

Static Member Variables

Rember class attributes?

OOQ: class attributes <-> C++: static member variables

OO: object instance attributes <-> C++: non-static member variables.
» BEvery object instance has its own set of object instance attributes

« All object instances share the same class attributes.

In C++ we use the "static" keyword.

Example:

cl ass MakesNoSense {
private:
static int counter;
int sonmeVar;
publi c:
voi d doSonet hi ng() ;
i nt getCounter();

}
voi d MakesNoSense: : doSonet hi ng(int a)
{

counter = a;

someVar = a;

MakesNoSense *a = new MakesNoSense(), *b = new MakesNoSense();
a- >doSonet hi ng(1);
b- >doSonet hi ng(2);
cout << a->getCounter(); // Discussion: What will this print?

del ete a; delete b;

Static Member Functions

As seen in the discussion about object orientation there can also be static member functions.
OO: Class operations <-> C++: static member functions

They also uses the keyword "static".

Usage:

e When thereis"only one"

» When the function does not depend on any non-static class atttributes

* For constructing pre-defined object.

73

Classesin C++

Example:

class Col or {
private:
int red, green, Dblue;
public:
static Color* createTTURed();
b

Col or* Col or::createTTURed()
{

Col or *c = new Col or;
c->red = 204;
c->green = 0;
c->blue = 0O;

return c;

}

Notes for static member variables:
 Sincethey are part of the class they are allowed to use private member data.

» However, they do not have an object with them. So they can only access static member variables
directly, all othersonly if they have an object.

To use a static member variable use them asif they where in anamespace. From within the class this
iS unnecessary.

Example:
Color* ¢ = Color::createTTURed();
Practice:

define aclass"Location" that has the two member variables posX and posY . provide a static member
function called "getOrigin()" that creates a new location with posX=0 and posY =0.

Show the class definition and the implementation for getOrigin(). Show an example of how this could
be called.

class Location {

private:
i nt posX posY,;
publi c:
static Location* getOigin();
s
Location* Location::getOrigin() {
Location *I = new Location();
| ->posX = O;
| ->posY = O;
return |;

}

Il_;).cati on *o = Location::getOigin();
Intermission: So how do | call amethod again?
Assume the follwing class definiton:

class Bla {

74

Classesin C++

public:
static int doSomethi ng(bool really);
string get Name();

}

To call the static function, we have 3 options:

/1 Preferred way:

int i = Bla::doSonething(true);

/1 This works also, but I do not like it.

int i = b->doSonething(true); // Assuming b is of type Bl a*
int i = c.doSonething(true); /1 Assuming c is of type Bla

To call the non-static function we have two options:

string
string

Inline Member Functions

Getters and setters are small, but implementing them takes an extra step. This can be very annoying.

b- >get Nane() ; /1 Assuming b is of type Bla*
c. get Nane(); /1 Assuming b is of type Bla

n n

C++ alows implementing functions where the actual definition is. This is called an "inline"
implementation.

Thereis also another kind of "inline" implementation with the keyword "inline". Do not confuse these
two. (they actually do the same thing).

Example:

cl ass Location
{ .
private:
int Xx,y;
publi c:
int getX() { return x; }
int getY()
{

}

voi d set X(int newx)

{

}
voi d setY(int newy) { y = newy; }

b

Even though inline functions are very often written in one line the formatting has absolutely nothing
to do with the name. It is just amore clear way to do it, especially with one-line implementations.

return y;

X = newx;

When calling an inline function, instead of jumping into the function the compiler actually insertsthe
code wherever the function is called. This makes the code faster, but larger. For short functions this
isadvisable, for long functions thisis a bad idea.

Why not always use inline?
* Inline makes the executable larger.

» One some compilers, inline code can not have conditional statements (if, case) or loops (for, while,
do..while). If you use such statementsin your inline functions your code will be less portable.

75

Classesin C++

this

Guidelines for this class:
* Itisno problem if you never useinline functions

* You should usethem only for short functionsthat contain at most 3 statements, and no conditional /
loop statements.

* | recommoned to use them on simple getters and setters.
Practice:
Complete this class definition by providing inline getters and setters:

cl ass Col or

{ .

private:
int red, green, blue;

public:
int getRed() { return red; }
void setRed(int r) { red =r; }
int getGeen() { return green; }
void setGeen(int r) { green =r; }
int getBlue() { return blue; }

void setBlue(int b) { blue = b; }

void setToBlack() { red = 0; green = 0; blue = 0; }

When talking about messages, we used the terms "sender" and "target”. When we're actually sending
messages, we use the notion target->messageName(parameters). This does not include the sender of
amessage. But what if we want the system to know who the sender is?

Solution: We could add the sender as an additional parameter. Example:

class ListOCars {

voi d addCar (Car *c);
}

Now if a car want's to add itself to the list, it can do so. All it needs is to have an object reference
to itself.

This object referenceis called "this'. ("self" in most other OO languages)
e Thisisonly valid in non-static methods (because it needs an object)

« It will always hold the reference of (point to) the current object.

Example:
void Car::registerMe()
{

list->addCar(this);
}

The use of "this" in setters.

Assume the following class:

76

Classesin C++

class Bla

{

private:
int attr;

public:
void setAttr(int);
/1

}
/1

void Bla::setAttr(int attr)
{

}

this->attr = attr;

77

Chapter 12. Constructors and
Destructors

Constructors and destructors are special forms of member functions.

I mportant

Constructor A constructor is used to initialize an object

Destructor A destructor is used to finalize an object (= clean it up)
Constructors

When an object instance is created, all member variables have unitizialized values. To make proper
use of an abject these member variables should be given some values.

Since you do not want to set all attributes manually, we use "constructors'.

Imagine the following class:

Figure12.1. A Counter class

Counter

-value :int=0

+getValue() : int
+increment()

This classis very useful to count. It is (purposely) written so that the counter can not be set from the
outside. Unfortunately C++ does not allow usto initialize variables with values. So how do we do it?

Answer: Constructors

Default Constructor

We define and implement a so called default constructor. A default constructor:
* Iscaled by default when an object instance is created.

* Needs no parameters

To define a default constructor we define afunction with

* the exact same name as the class

* no parameters

* no return type (not even void)

In most cases the default constructor will be public. However there are cases where you want it private
(more about that ater)

78

Constructors and Destructors

Usually consturctors are defined as the first methods. Usually default constructors are the first of the
constructors

Example:

cl ass Count er

{

private:
i nt val ue;
public:
Counter();
/1

b
Practice:

Define the following class, add a default constructor.

Figure 12.2. A daisy

Daisy

-leaves :int=12

+shelLovesMe() : bool

Implementing a default constructor is again the same as implementing that method that has the same
name as your class.

What should you do in a constructor?

» All member variables should be initialized

If adefault valueis given in the model, use that

If not, make up good starting values (0 for numbers, null for pointers).

« If thereis something else your object needs to do before it starts, thisis the place to do it.

Example:
Count er:: Counter ()
{
val ue = 0;
}
Practice:

Implement the default constructor for the Daisy class defined earlier.
Calling a default constructor:

A default construcotr is called everytime the object is initialized and we don't do anything special.
Examples:

Counter *c;
¢ = new Counter; // calls the constructor
Counter *c2 = new Counter(); // calls the constructor

79

Constructors and Destructors

Counter c¢3; // calls the constructor
Counter c4(); // calls the constructor

The parentensis () are optionional in this case. | prefer to use them to show visually that a constructor
iscalled. You may do asyou like.

Practice: Create a (dynamic reference to @) Daisy object and call its default constructor

Constructors with parameters

By this time at least one of you has heopfully aready asked about it: What happens if we want to
initialize variables, but we only know the values at construction? What if we need parameters to
initialize the values to something that makes sense?

Example:

Figure 12.3. Location Class

Location
-X :int
-y int
+getX() : int
+getY() : int

What should we use as starting valuesfor x and y? 0 and 0 may be good valuesfor adefault constructor,
but what we really want is a parameterized constructor where we can passin the values.

Fortunately defining and implementing parameterized constructorsisthe same as default constructors,
only that now we have parameters:

class Location
{ .
private:
int x,y;
public:
Location(int, int);
/1
}s

Locati on:: Location(int nx, int ny)

{

nx;
ny;

X
y
}
//alternate:
Location::Location(int x, int vy)
{

t hi s->x

t hi s->y
}

X,
yi

80

Constructors and Destructors

Practice: Change "Daisy" to define an implement a constructor with one parameter (for number of
leaves).

Just as with overloading (not overriding) we may have multiple constructors with different parameter
lists. In most cases there will be a default constructor and one that takes parameters.

cl ass Location

{ .
private:
int x,y;
public:
Location() { x =0; y =0; }
Location(int nx, int ny) { x = nx; y = ny; }
Location(int d) { x = d; =d; }
/1
1

alternate, but not the SAME!!!!I!]
Location(int nx=0;int ny=0) { x = nx; y =ny; }

Calling a parameterized constructor:
We call parameterized constructors during object creation. Example:

Location *la = new Location(1,2); // for dynam c objects
Location | b(4,5); /1 for static references

Practice: Create another new (dynamic) Daisy object and call its parameterized constructor.
Please note:
If we define no constructors, C++ will automatically provide an empty a default constructor.

If we define at least one constructor (default or parameterized) C++ will complain if we want to use
the default constructor. This sometimes happen accidentaly.

Example:

Location |; // calls the default constructor
/1 even though its not obvious

The copy constructor

This partismerely for completenes, but | will not ask you for that in any test. Assume Location object
as given earlier, and all static object references.

Location la(1,2);
Location | b;
Ib = 1a;

What happens here?
In thefirst line an object is created with the parameterized constructor.
In the secont line an object is created with the default constructor.

In the third line the object previousely referenced by Ib isthrown away. A new object is created using
the "copy constructor” to copy the variable values from la. This new object is then assigned to la.

C++ provides this copy constructor for us. If we want to override it we need to decare a constructor
that takes one parameter whos typeis areference to the class type.

81

Constructors and Destructors

Example:

cl ass Location

{

- Locati on(const Location &); // const is optional but recommended
3
Destructors

So far we have talked about

* using objects

* creating objects

But we also need to know how to:

« dispose of objects properly
Destructors are used to finalize an object.

The main purpose of a destructor is to clean up after the object, in most cases this means deleting
memory.

Tofind out where to del ete, we need to find out who is"responsible” for a certain object. In most cases
thiswill be the creator, but it doesn't have to be.

Assume the following classes:

Figure 12.4. A Person with a L ocation

Person _pos. | Location
+name{readOnly} +X :int
+y :int

In this case we can clearly assume that objects of class "Person" are responsible for their pos object
(of class Location).

So whenever a Person is deleted we want their Location to be deleted as well.
Defining a destructor:

A destructor is defines like amethod that has no return type (just like the constructor), the name tilde-
classname (e.g. ~Person) and no parameters. There are no parameterized destructors.

Example:

cl ass Person

{
public:

~Person();

82

Constructors and Destructors

Note on the location of the definition:

» Some people define the destructor after all constructors before other methods.
» Some people define the destructor after the very last method.

Y ou may do either or, put please again: Do not mix within one project!

Practice!

Figure 12.5. Car and Wheels

Car -wheels _|wheel

Example solution

cl ass Car

{

private:
VWeel *wheel s[4];
publi c:
Car () ;
~Car ();
1

/1

Car::Car ()
{
for (int i=0;i<4;i++)
wheel s[i] = new Weel ();
}

Implementation for destructors:
Just like any other method. Example:

Per son: : ~Per son()

{

del et e pos;

}
A destructor should

» Delete all objects this object was responsible for

 Clean up every thing else needed. If the object resembles hardware is should close the connection.
(Example on fstreams: deleting an fstream closes the file)

Practice: Implement destructor for car.

Car:: ~Car ()
{

83

Constructors and Destructors

for (int i=0;i<4;i++)
del ete wheel s[i];
}

How to call destructors:
Destructors are automatically called whenever an object is deleted.
* For dynamic object references that means delete ...;

* For static object references that means the variable runs out of scope.

Example:
Person *p = new Person("Wl do");
{d/elete p; /1l <-- calls the destructor
{
Person q("Wal do");
/1

} [/l <-- call of the destructor
Note for eclipse:

When you create classes in eclipse via the New/Class function it creates a default constructor and a
destructor for you. It also follows all naming conventions and provides guards for multipleinclusions.

Thedestructorsin eclipse have the "virtual" keyword. For now you may ignoreit. It isimportant when
we talk about inheritance.

Implicit destructors:

If you do not provide adestructor C++ will provide onefor you. Unfortunately this one won't do much
(unless you're using inheritance).

Here is a complete example:

/1 Location.h
#i f ndef LOCATION H_
#define LOCATION H_

cl ass Location

{ .
private:
int x,y;
public:
Location();
Location(int x,int y) { this->x = x; this->y = y; }
~Location();
int getX() { return x; }
int getY() { returny; }
s

#endi f /*LOCATI ON_H */
/] Person.h

#i f ndef PERSON_H_
#defi ne PERSON_H_

#i ncl ude <string>

Constructors and Destructors

usi ng nanmespace std;
cl ass Location;

cl ass Person

{ .

private:
string nane;
Location *| oc;

public:
Person(string nane);
Person(string name, Location *I);
~Person();
voi d cheat ();

b
#endi f /*PERSON_H */
/1 Location.cpp

#i ncl ude <cstdlib>
#i ncl ude "Location. h

Locati on:: Location()

{
/1 Randomizer is initialized in main.cpp
X = rand()%00;
y = rand() %00;
}
Locati on:: ~Locati on()
{
/1 Nothing to do
}

/1 Person. cpp

#i ncl ude <i ostreane
#i ncl ude <string>

#i ncl ude " Person. h"
#i ncl ude "Location. h"

Per son: : Person(string namne)

{
t hi s->nanme = nane;
/1 No location given? Ok, create a new one
/1 Qur destructor will make sure it gets del eted.
t his->loc = new Location();
}
Person: : Person(string nane, Location *I)
{
t hi s->nanme = nane;
/1 Location given? Use it!
/1 Please note: In this case we decided that Person
/1 is responsible for the location. So it nust NOT
/1 be deleted on the caller, but here!
this->loc = 1|;
}

85

Constructors and Destructors

Per son: : ~Per son()

{

/1 We're responsible for loc, so let's delete it!
del ete | oc;

}
voi d Person:: cheat ()
{
cout << nane << " is at "
<< loc->getX() << ", " << |oc->getY()
<< endl;
}

/1 main.cpp

#i ncl ude <cstdlib>

#i ncl ude <cti nme>

#i ncl ude <i ostreane
#i ncl ude "person. h"
#i ncl ude "l ocation. h"

int main()

{
// Initialize random zer
srand(tine(0));

/1 We don't know anythi gn about | ocation
Person *w = new Person("Wal do");

w >cheat () ;

del ete w

/1 Creating a location and i nmedi ately passing the
/1 responsibility to the Person object

Person *m = new Person("Max", new Location(12, 34));
m >cheat () ;

del ete m

/1 Creating a Location

Location *fiftyfifty = new Locati on(50, 50);

/1 Passing it (and the responsibility for it) to
/1 Person

Person *nmd = new Person("M ddl eman", fiftyfifty);
nd- >cheat () ;

/1 This also deletes the |ocation

del ete nd;

/1 Typical nistakes! Do not do any of those!

/1 the object reference by fiftyfifty just got del eted!
cout << fiftyfifty->getX() << endl

Person *pil new Person("Personl",|c);
Person *p2 new Person("Person2",1c);
/1 Now both pl and p2 are responsible for Ic. So both
/1 will try to delete it! Bad idea...

Location *l ¢ = new Location(11, 22);

/1 deletes pl and Ic

86

Constructors and Destructors

del ete pil;

/1 will crash
p2->cheat () ;

return O;

87

Chapter 13. Inheritance

In C++ aclass can derive from zero or more base classes.

Unlike Other languages (ObjC, Java), there is no common base class. A class that is not derived is
really not derived.

derived class (subclass) aclasswith at least one base class

direct base classes (direct are the classes are the classes that are immediate base classes
superclasses)

indirect base classes (indirect are the classes that are superclasses of the direct base classes
superclasses) (and their superclasses, etc.)

Remember: A base class inherits all the functions and variables of all of its superclasses!

Inheritance in C++:

class Max { ... };

class SoneClass { ... };

class LittleMax : public Max { ... };

class MultiDerived : public Max, public SoneClass { ... };
class LinearDerived : public LittleMax { ... };

To declare inheritance:

between the class name and the opening brace, insert a colon, the keyword public, and the name of
the base class.

There are also other types of inheritance (other than "public") which we will talk about later. Other
OO0 languages (ObjC, Java) only have public inheritance

If you have multiple direct base classes, join them with acomma.
Practice:

Define these two classes with inheritance. Y ou may omit al contents of the actual class (the attribtues
and methods), | am only interested in the definition line (as in the example).

Aircraft

-course

+turn(new Course) : boolean
[AY

Glider

-tow lineAttached : boolean

+releaseTow line()

Virtual

Remember when we talked about polymorhpism and function overriding? Unfortunately, C++ is a
grown languages, and therefore does not allow function overriding by default. We need to do two
things:

88

Inheritance

» Usedynamic object references. If we use static references, classesget "dliced". Thisisavery strange
concept. If your interested, read page 156 of C++ in a Nutshell. Just remember: To use function
overriding, and to make proper use of inheritance, always use dynamic references.

» Functions to be overridden or that are overridden are declared with the "virtual" specifier (only in
the declaration, not the implementation).

In other languages (ObjC, Java), virtua isthe default.
Therefore, for this class:

» Specify ALL functions (including destructor, excluding constructor) asvirtual in al classesthat are
subclasses or superclasses!

Example 13.1. Example: Implementation of polygon

Polygon

-points : Location [*]

+draw ()
+getArea() : float

T

Triangle Rectangle

+getArea() : float +getArea() : float

Here are the class definitions:

cl ass Pol ygon {
private:
vect or<Location *> points;
public:
Pol ygon(vect or <Location *> points);
virtual void draw();
virtual float getArea();

b

class Triangle : public Polygon {

public:
Triangl e(Location *pl, Location *p2, Location *p3);
virtual float getArea();

89

He xag

Inheritance

b

class Rectangle : public Polygon {

public:
Rect angl e(Location *topLeft, Location *bottonR ght);
virtual float getArea();

b

cl ass Hexagon : public Pol ygon {
publi c:
Hexagon(Location *center, float radius);

b

And some code that uses these classes:

// assunme vl is a vector<Location *> with sonme useful val ues.
/1 assume pl,p2, .. are Location* with useful val ues;

Pol ygon *pgl = new Pol ygon(vl);
Triange *t1 = new Triangl e(pl, p2, p3);
Rectangl e *r1 = new Rect angl e(p4, p5);

/1 Using oo:
Pol ygon *pg2
Pol ygon *pg3
Pol ygon *pg4

new Tri angl e(p6, p7, p8) ;
new Rect angl e(p9, p10);
new Hexagon(plil, 1.0);

cout << pgl->getArea() << endl; // calls getArea() from Pol ygon
cout << pg2->getArea() << endl; // calls getArea() from Triangle
cout << pg3->getArea() << endl; // calls getArea() from Rectangle
cout << pg4->getArea() << endl; // calls getArea() from Pol ygon

Practice;
Aircraft
+startEngines()
Boing747 Glider

+startEngines()

Define these three classes. Show the class definitions and the definitions for the methods given here
(al other methods/ attributes/ constructors/ etc. may be ommited)

class Aircraft {
public:

90

Inheritance

virtual void startEngines();

1
cl ass Boing747 : public Aircraft {
1
class dider : public Aircraft {
public:

virtual void startEngines();
1

Base constructors and protected

L ets go back to the geometry example:
Remember Polygon and Rectangle:

cl ass Pol ygon {
private:
vect or<Locati on *> points;
public:
Pol ygon(vect or <Location *> points);
virtual void draw();
virtual float getArea();

b

cl ass Rectangle : public Polygon {

publi c:
Rect angl e(Locati on *topLeft, Location *bottonR ght);
virtual float getArea();

1
With the knowledge we have so far we would implement the polygon constructor as follows:

Pol ygon: : Pol ygon(vect or<Locati on *> points)

{

t hi s->points = points;

}

And something like this for the rectangle:

Rect angl e: : Rect angl e(Location *topLeft, Location *bottonR ght)

{
poi nts. push_back(topLeft);
poi nts. push_back(new Location(topLeft->getX(), bottonRi ght->getY()));
poi nts. push_back(bottonRi ght);
poi nts. push_back(new Locati on(bottonRi ght->get X(),topLeft->getY()));

}

Unfortunately C++ gives us strange compiler errors:

e std::vector<Location*, std::all ocat or<Locati on*> >
Pol ygon: : points' is private

e« error: no matching function for call to " Polygon:: Pol ygon()
What is happening here?

Answer (tothefirst one): pointsis private. Everything that is private can only be used in this particular
class, and none of its superclasses. There are two options:

91

Inheritance

» Add getters/ setters and use those instead
 changethe visihility from "private" to " protected"

protected protected methods and variables are available to all members of this class and all of
its subclasses.

Answer (to the second one): Every constructor implicity calls the constructor of its superclass(es). If
we don't tell it which constructor to useit tries to call the default constructor.

Unfortunately it calls the superconstructor BEFORE we can do anything.

We have therefore two choices:

» Call aspecific superconstructor

 add adefault superconstructor

In this case | decided on the default superconstructor. Here is the complete new definition:

cl ass Pol ygon {
private:
pr ot ect ed:
vect or<Locati on *> points;

Pol ygon() {};
publi c:
Pol ygon(vect or<Locati on *> points);
virtual void draw();
virtual float getArea();

1
* We made "points' protected so that subclasses can useit directly
» We added a default constructor that doesn't do anything

» The default constructor is protected. The subclasses should be able to call it, but no one from the
outside!

So the notes for inheritance in C++ are:
» make all functions virtual
» maybe add a default constructor

» change someitems from "private" to "protected” to give subclasses access.

Calling base destructors

Thisis easy. We don't need to. We just need to make sure all destructors are virtual. Then they will
automatically be called in reverse order.

So what is the order? Assume the following classes (with all virtual destructors:

class Base { .. } ;

class SubCl ass : public Base { ... };

cl ass SubSubC ass : public Subdass { ... };
Now when we call

Base *b = new SubSubd ass();

92

Inheritance

It will execute:

1. The constructor of Base

2. The constructor of SubClass

3. The constructor of SubSubClass
And when we clean up:

del ete b;

1. The destructor of SubSubClass
2. The destructor of SubClass

3. The destructor of Base

The point hereis: Always make destructors "virtual" and you have no problem.

Calling Specific Base constructors

Sometimes when you write a constructor, you would like to pass some of the parameters to a base

constructor.
Example:
cl ass Person {
private:

Dat e *birthday;
public:

Person(Date *bd);
1
class Student : public Student {
private:

School *attends;
public:

Student (Date *birth, School *sch);
b

In this case, the "bd" parameter for the school constructor could just be passed on to the parent
constructor. And we can do that by calling the parent constructor:

Student:: Student (Date *birth, School *sch) : Person(birth) {
t hi s->school = sch;

}

Pros and Cons:

» Worksonly if we can put the parameters for the superconstructor within one expression
 You don't have to provide a default constructor in your superclass

* You can keep your attribute private

Note: If you're in multiple inheritance, you can call multiple superconstructors by separating them
with acomma. E.g. : Person(birth), OtherConstructor(params).

Practice: Assume these two given class definitions. Implement both constructors, with one calling its
superconstructor.

93

Inheritance

cl ass Conmput er

{
private:
i nt cpuSpeed;
public:
Conput er (i nt cpuSpeed);
1
cl ass Laptop : public Computer
{
private:
int batterylife;
publi c:
Lapt op(i nt cpuSpeed, int batteryLife);
1
Conput er: : Conput er (i nt cpuSpeed)
{
t hi s- >cpuSpeed = cpuSpeed,;
}
Lapt op: : Laptop(int cpuSpeed, int bl) : Conputer(cpuSpeed)
{
batteryLife = bl
}

Pure Virtual / Abstract

We can now define classes with inheritance, call super constructors, and super destructors. By now
we know almost everything needed to implement all our classdesigns. The only thing left is"abstract”
methods.

pure virtual function C++ speak for "abstract method". Function, since this is what C+
+ calls methods in objects. Virtual, because it is to be overridden.
And "pure" since it hasto be overriden.

To denote pure virtual functions make then virtual and add a = 0 (equals zero) between the argument
list and the semicolon. Example:

virtual void someFunction(int param float noreParam = O;

Thisisone of the rare cases where you actually have to use = 0 and NOT an expression that evaluates
to 0 (e.g. = 1-1). However, whitespace doesn't matter, so =0 would also work.

Abstract class. Remember from the OO Section:

Abstract class Abstract classes contain (or inherit) at least one abstract method. Abstract
classes can not be instantiated.

In C++ thereis no explicit notion for abstract classes. (But don't forget it when you model!)
So here's a complete example of an abstract class:
cl ass Fi nanci al Manager {

public:
virtual bool shouldllnvestin(string what) =0;

}s

And an example of overriding:

94

Inheritance

cl ass Bi gSpender : public Financial Manager {
public:
virtual bool shouldllnvestin(string what) { return true; }

b
Practice:

Give the definition (not the implementation) of these 3 classes:

StreetVehicleV2

+getCurrentSpeed() : float
JAY JAY

Motorcycle Car

+getCurrentSpeed() : float +getCurrentSpeed() : float

class StreetVehicleV2 {
publi c:

virtual float gCS() = O;
b

cl ass Mdtorcycl e: public StreetVehicleV2 {
publi c:

virtual float gCS();

b

/] somewhere el se:
float Mdtorcycle::gCS() {
/1

}
Something completely different: vector

Y ou have seen it, and you may want to use it, so here is a complete short description of the "vector"
datatype.

What is vector? vector isthe answer to all the problems with arrays.
* Itisinthe header <vector>
* Inthe namespace std

To declare avector, use the typename vector, and then the contained datatype in pointy brackets <>.
Example:

vector<int> bl a; /1 as opposed to int bla[];
vector<Location *> | oc;

vect or<string> nanes;

vect or <bool ean> i sltTrue;

vect or<vect or <i nt >> t woDVect or;

95

Inheritance

To add elementsto avector, useits method push_back. push_back takes exactly one argument, which
must be of the same type the vector enumerates. Examples:

bl a. push_back(1);

| oc. push_back(new Location(1,2));

nanes. push_back(" Test");

i sl'tTrue. push_back(true);

t woDVect or . push_back(bla); // Probably. Need to test this!

Another important function is "size". Size takes no parameters and returns the number of elements.
Example:

vector<int> x;

X. push_back(23);

X. push_back(42);

cout << x.size() << endl; // prints 2

To access elements you can use the [] operator just like with arrays. Just like arrays the first element
isat index 0 and the last element is at .size() - 1. Do not access elements out of range! Example:

cout << x[0] << endl; // prints 23
cout << x[1] << endl; // prints 42

Y ou may also write to elements, but only to existing ones!

x[1]
x[2]

7; I/ valid
123; // WII crash. Use .push_back to add el ements!

vector has many more fun features. Read C++ in aNutshell, pg. 722 - 726 if you are interested.
More complete example: The Coin Toss Game again.

/1 Coin.h

#i fndef CON H_
#define CON H_

#i ncl ude <i ostreanr

enum Si de { HEADS, TAILS };
std::ostream& operator<< (std::ostream &, Side s);

#endi f /*CO N H */
/1 ConputerPl ayer.h

#i f ndef COVPUTERPLAYER H_
#defi ne COVPUTERPLAYER H_

#i ncl ude " Pl ayer. h"

cl ass ComputerPlayer : public Player
{

private:

Si de bet;

public:

virtual void nakeBet();

virtual Side getBet() { return bet; }
Conput er Pl ayer (std::string nane);
b

96

Inheritance

#endi f /* COMPUTERPLAYER H */

/1 HumanPl ayer. h

#i f ndef HUMANPLAYER H_
#def i ne HUMANPLAYER H_

#i ncl ude " Pl ayer. h"

cl ass HumanPl ayer : public Player
{
private:
Si de bet;
public:
HumanPl ayer () ;
HurmanPl ayer (std::string nane);
virtual void nakeBet();
virtual Side getBet() { return bet; }

} ’
#endi f /*HUMANPLAYER H */
/1 Player.h

#i f ndef PLAYER H_
#defi ne PLAYER H_

#i ncl ude " Coin. h"
#i ncl ude <string>

cl ass Pl ayer
{

pr ot ect ed:

std::string nane;

Player() {}

public:

Pl ayer(std::string name) { this->nane = nane; }
virtual ~Player() {}

virtual void makeBet ()=0

virtual Side getBet()=0;
std::string getNanme() { return name; }

} ’
#endi f /*PLAYER H */

// TossGane. h

#i f ndef TOSSGAME_H
#def i ne TOSSGAME_H

#i ncl ude <vector>
cl ass Pl ayer;
cl ass TossGane

{

private:
std::vector<Pl ayer *> players;

97

Inheritance

public:

TossGane();

voi d play();

virtual ~TossGane();

} ’
#endi f / *TOSSGAME_H */
/1 Coin.cpp

#i ncl ude " Coi n. h"

std::ostream& operator<< (std::ostream &o, Side s)

{
if (s == HEADS)
0 << "heads";

el se
0 << "tails";
return o;

/1 Conput erPl ayer. cpp

#i ncl ude " Conputer Pl ayer. h"
#i ncl ude <cstdlib>

voi d Comput er Pl ayer: : nakeBet ()

Conput er Pl ayer: : Conput er Pl ayer (std::string s) : Player(s)

{
if (rand()%2==0)
bet = HEADS;
el se
bet = TAILS;
}
{
bet = HEADS;
}

/1 HumanPl ayer. cpp

#i ncl ude "HumanPl ayer. h"
#i ncl ude <i ostreane
usi ng nanmespace std;

voi d HurmanPl ayer: : makeBet ()

cout << "Wbuld you like to bet on heads (h) or tails (t) ? ";

{
char c;
cin >> c;
if (c =="'h") bet = HEADS
else if (c =="'t"'") bet = TAILS;
el se {
cout << "| don't recognize that.
bet =TAILS;
}
}

HurmanPl ayer : : HumanPl| ayer (string s)

["Il just assume tails.

Pl ayer (s)

<< endl;

98

Inheritance

{
bet = TAILS;

}

HumanPl ayer : : HumanPl ayer ()

{

cout << "What is your name? “;
cin >> this->nane;

}

/1 main.cpp
#i ncl ude "TossGne. h"

int main()
{
TossGane g;
g.play();
return O;

}

/1l TossGane. cpp

#i ncl ude "TossGane. h"

#i ncl ude "HumanPl ayer. h"

#i ncl ude " Conputer Pl ayer. h"
#i ncl ude " Networ kPl ayer. h"
#i ncl ude <cstdlib>

#i ncl ude <ctine>

#i ncl ude <i ostreanp

usi ng nanmespace std;

TossGane: : TossGane()

{

srand(tine(0));

[/ char x;

/1 unsi gned int nunber;

/*
cout << "How many players? ";
cin >> nunber;

for (unsigned i=0;i<nunber;i++) {
cout << "What type of player?"
cin >>

}
*/

pl ayers. push_back(new HumanPl ayer());

pl ayers. push_back(new Conput er Pl ayer (" Conp"));

pl ayers. push_back(new Conput er Pl ayer (" Anot her Conp")) ;
/1 players. push_back(new Networ kPl ayer());

}

TossGane: : ~TossGane()
{

for (unsigned int i=0;i<players.size();i++)

99

Inheritance

del ete players[i];

}
voi d TossGane: : pl ay()
{
for (unsigned int i=0;i<players.size();i++) {
cout << players[i]->getNanme() << " mmkes a bet..." << endl

pl ayers[i]->nmakeBet ();
cout << players[i]->getNane() << " bets on " << players[i]->getBet() << endl

}

cout << "Now | flip the coin..." << endl
Side | anded = TAILS;

if (rand()%2==0) |anded = HEADS

cout << "It landed on " << landed << endl

for (unsigned int i=0;i<players.size();i++) {
cout << players[i]->getNane() << " has "
if (players[i]->getBet()==Ianded)
cout << "won!";
el se
cout << "lost!";
cout << endl
}
}

And the Same without OO:

#i ncl ude <i ostreane
#i ncl ude <cti nme>
#i ncl ude <cstdi o>
#i ncl ude <vector>
usi ng nanmespace std;

enum Pl ayer Type { HUMAN, COWPUTER, NETWORK };
enum Si de { HEADS, TAILS };

std::ostream& operator<< (std::ostream &o, Side s)

{
if (s == HEADS)
0 << "heads";

el se
0 << "tails";
return o;

struct Player {
Pl ayer Type pl ayer Type;
string nane;
Si de bet;
}s

vect or <Pl ayer *> pl ayers;
void initializeGne()

{
srand(tine(0));

100

Inheritance

Pl ayer *m = new Pl ayer;
m >pl ayer Type = HUVAN
m >nane = " Max";

pl ayers. push_back(m;

Pl ayer *c = new Pl ayer;
c->pl ayer Type = COVPUTER
c->nane = "Comp";

pl ayers. push_back(c);

Pl ayer *n = new Pl ayer;
n- >pl ayer Type = NETWORK
n->name = "John Doe";
pl ayers. push_back(n);

}

Si de bet Human()
{
Si de bet;
char c;
cout << "Wbuld you like to bet on heads (h) or tails (t) ? ";
cin > c;
if (c =='h'") bet = HEADS
else if (c =="'t") bet = TAILS;
el se {
cout << "I don't recognize that. I'll just assume tails." << endl
bet =TAILS;
}

return bet;

}

Si de bet Conmput er ()
{
Si de bet;
if (rand()%2==0)
bet = HEADS;
el se
bet = TAILS;
return bet;

}

voi d pl ayGane()
{
for (unsigned int i=0;i<players.size();i++) {
cout << players[i]->name << " makes a bet..." << endl
if (players[i]->playerType == HUVAN)
pl ayers[i]->bet = betHuman();
el se {
pl ayers[i]->bet = bet Conputer();
}

cout << players[i]->nane << " bets on " << players[i]->bet << endl

}

cout << "Now | flip the coin..." << endl
Side | anded = TAILS;

if (rand()%2==0) |anded = HEADS

cout << "It landed on " << landed << endl

101

Inheritance

for (unsigned int i=0;i<players.size();i++) {
cout << players[i]->nane << " has ";
if (players[i]->bet==Ianded)
cout << "won!";
el se
cout << "lost!";
cout << endl;
}
}

voi d cl eanUp()
{

for (unsigned int i=0;i<players.size();i++)
del ete players[i];

}

int main()

{
initializeGne();
pl ayGame() ;
cl eanUp();
return O;

}
Multiple Inheritance and virtual inheritance

Unlike other languages, C++ alows multiple inheritance.

Unfortunately multiple inheritance leads to lots of problems: If a variable or method is declared in
more than one superclass.

Therefore we wil not do discuss many details. If you're interested, read pages 163 - 166 of C++ in
anutshell.

Here are some guidelines to make multiple inheritance feasable. Thisiswhat Java and Delphi do.
A class may inherit from one "regular superclass.

All other superclass must be pure abstract (interfaces) which means: Only pure virtual functions (no
implementations) and no attributes (variables).

Why would you need multiple inheritance? Everytime something is multiple things at one time. E.g.
a"FlyingCar" could be asubclass of "Car" and of "Airplane”.

Example:

class Car {
public:
virtual void driveTo(Location *1)=0;

b

class Airplane {
public:
virtual void flyTo(Location *I|)=0;

b

class FlyingCar : public Car, public Airplane {
public:

102

Inheritance

virtual void flyTo(Location *I);
virtual void driveTo(Location *I);

b

Now suddently getter methods make much more sense! A superclass can define virtual getter and
setter methods without actually defining the attribute!

Example:

cl ass Airplane {
public:
virtual int getHei ght AboveG ound()=0;
virtual void setHei ght AboveG ound(int h)=0;
b

[IPractice: Define the following classes:

Notes on virtua inheritance

103

Chapter 14. Access specifiers

We have already talked about these, but let's define them again.

public

attributes and methods that are public are accessible to every user of the objects.

Itisusually abad ideato make attributes public.

protected

attributes and methods that are protected are accessible to methods of the class and every subclass
(direct or inderect) of that class.

private

attributes and methods that are private are only accessible from methods within that class.

friends

Sometime you want to give other classes access to private and protected methods and attributes.
Y ou can do that by giving another class "friend" privilege.

It does not matter where you declare the friend, as long asitsin the class definition.

Friends are explicit. They are NOT transitive and do NOT inherit.

Friends are often used for private constructors.

In this case we do not want to make the default constructor public, since it does not initialize all
attributes.

But if we know that another class is "good" enough to set all the attributes we can make that class
afriend.

class A {
friend class B;
private:
int attr;
A();
public:
A(int a) { attr = a; };
void setAttr(int b) { attr = b; };
b

class B {
private
A* attr,
public:
B() {
attr = new A();
attr->set Attr(14);

}

104

Access specifiers

}

"Friends" are especially useful in the Factory design pattern. You will learn about that in a software
engineering class.

105

Chapter 15. Templates

Aswe have seen in the OO chapter, the last concept of object orientation is genericity.
Unfortunately, genericity isa'new" concept.

Genericity in C++ is supported through templates. Templates were added in the ANSI C++ standard
(1999). They work on most modern compilers.

Genericity in Javawas added in Java 1.5 (2004) through Generics. Thisis still pretty new.
So what is genericity again?

Genericity isthe concept of writing classesthat work with any datatype. The dataypeisgiven whenever
an object of that class gets instantiated.

Example: Remeber the CarStack, PersonStack and Generic stack:

CarStackV2 PersonStackV2
-items : Car [*] -items : Person [*]
+addltem(i : Car) +addltem(i : Person)
+removeltem() : Car +removeltem() : Person

l?: Class,
e

GenericStack

-items : T [*]

+addltem(i: T)
+removeltem() : T

In C++, Generics are implemented through class templates.
The most prominent use of class templatesisin the standard template library (STL)
Here is an example of aclass template:

t enpl at e<cl ass T>
cl ass CenericStack {
private:

vector<T> itens;

106

Templates

public:
void addltem(T i);
T removeltem();

1
So, to define atemplate class
* Usethe keyword "template”

 In pointy brackets <> define the template parameters. Every template parameter starts with the
keyword "class' (or "datatype"), followed by a name of your choice. The most commonly used
names are single upper case characters startingwith T: T, U, V, ...

* Inside your class, you can use your template parameters just like other data types (int, float,
String, ...)

» Theactual datatypeis assigned when you "instantiate" this class.
Practice:

Define ageneric "Location" class. This class should store two attribtues (X, y) which are of the same
datatype, given during itsinstantiation. Show: The class definition, the attributes, the getter and setter
functions for both.

t enpl at e<cl ass T> cl ass Location {

private:

T X,Y;
publi c:

void setX(T newxX); // same for Y

T get X(); /1 sanme for Y

addSomeThi ngToX(T addToX) { x = x + addToX; }
i

Default parameters: In the template definition, you may use default parameters. An example is the
"basic_string" class from the STL. It defaultsto string of the "char" type. Example:

tenpl ate<class T = char> basic_string ...
Just like default parameters, you may or may not specify these when instantiating. Example:

basi c_string s;

basi c_string<> s3; // does not worKk!

basi c_string<char> s2; // sane as above

basic_string<int> is; // does not nmake nmuch sense

basi c_stri ng<wchar > ws; /1 wchar may not exist on your system

Which brings us directly to the next part: Instantiating template classes.

Y ou instantiate a template class by using the class name, adding pointy brackets <> and adding the
datatypes. Example:

CGeneri cSt ack<Car > car St ack;
CGeneri cSt ack<Car *> dynam cCar St ack;
CGeneri cSt ack<Per son> personSt ack;

Practice: Define a variable that instantates your "Location” class with the "int" datatype. Define a
variable that instantiates your "Location" class with the "float" datatype.

Location<int> il;
Locati on<fl oat> fl;

Implementing functions from template classes:

107

Templates

To implement a function from atemplate class, you have to repeat the template declaration (without
default parameters), and add the the same template to the class name. Example:

tenpl ate <class T>
voi d GenericStack<T>::addltem(T i)

{
111

}

tenpl ate <class T>
T Generi cStack<T>::renovel tem)

{
111

}

Practice:
Provide the implementation for the getters and setters from the "L ocation” class.

tenpl ate <class T>
voi d Location<T>::setX(T x)

{

this->x = x;

}

Caveat:

Templates are not actualy instantiated until they are used. They are instantiated once for every
datatype used

CGeneri cSt ack<Car > x; /1 instantiates the CGenericStack for cars
CGeneri cSt ack<Car > y; /1 resuses that
Ceneri cStack<Person> p; // instantiates the GenericStack for people

Therefore, if you implement them in an extrafile they are not instantiated.
Unfortunately every compiler handles this problem differently.
In gec this can be fixed by putting the implementation into the actual header file!

Note: You can use use templates without classes, for more information see C++ In a Nutshell, pages
174 - 210.

108

Chapter 16. The STL

Once C++ had a good template mechanism, people started implementing data structures using these
templates. The most widespread collection of templates came from SGI and HP and was called the
STL.

Standard Template Library (STL) A set of data structures and algorithms using templates. Now
part of the C++ standard.

For a complete reference to the STL:
« Read C++ in aNutshell

» Go to http://www.sgi.com/tech/stl/table_of _contents.html

Containers
A Container is an object that stores other objects (its elements), and that has methods for accessing
its elements.

All Containers provide methods to create iterators (see iterators below).

All containers provide the following methods:

unsigned int size() returns the current size of the container
bool empty() returns true if the container is empty
Sequences

In most containers that we have seen so far, the order of elements is important. The STL provides
several sequence containers.

Most of these containers support the same operations. Then why bother having two implementations
for it? Because every container performs differently on different operations!

Example:

WEe'll talk about the two template types "vector” and "list" (in the <vector> and <list> includes)
A vector isbased on an array.

* Getting the nth element of an array isfast -> getting the nth element of a vector is fast

* Adding an element to the end of thelist isfast

» Adding an element in the middle requires moving all elements past this one back -> dow

» Adding an element to the beginning requires moving all elements back -> very slow
listisbased on aliked list

 Getting the nth element of alinked list requires traversing all elements to that point -> slow

» Adding an element anywhere in the list does not require any movement -> fast (once the element
is found)

Y ou will learn more about the implementation issues in the data structures class.

Both vector and list support:

109

http://www.sgi.com/tech/stl/table_of_contents.html

The STL

push_back(T x) add an element to the end of thelist
pop_back() removes the last element

T back() returns the last element

T front() returns the first element

Only list supports:

push_front(T X) add an element to the beginning of the list
pop_front() removes the first element

Only vector supports:

[] orat() access element at the given index.

Here are some examples:

#i ncl ude <i ostreanp
#i ncl ude <list> !/l For |ist
#i ncl ude <vector> // For vector

usi ng nanmespace std; // Al STL containers are
/1 in the std nanespace.

int main()

{

vector<int> a; // Declare a vector that takes int
a. push_back(3); // add to end of vector

a. push_back(24);

a. push_back(42);

/1 as long as we still have el enents
while (la.empty()) {
/1 print the |ast el enent
cout << a.back() << "
/1 and renove it!
a. pop_back();
}
cout << endl;
/1 this (above) printed 42 24 3

list<int> b; // declares a linked list that takes int
/1 adds sonme elenents to the end
b. push_back(3);
b. push_back(24);
b. push_back(42);
/1 as long as there are elenments |eft
while (!'b.empty()) {
/1 print the |ast el enent
cout << b.back() << " ";
/1 and renove it
b. pop_back();
}
cout << endl;
/1 this (above) printed 42 24 3

list<int> c; // declares a linked list that takes int

110

The STL

/1 adds some elenments to the end
c. push_back(3);
c. push_back(24);
c. push_back(42);
/1 as long as there are elenments |eft
while ('c.empty()) {
/1 print the first el ement
cout << c.front() << " ";
/1 and renove it
c. pop_front();
}
cout << endl
/1 this (above) printed 3 24 42

return O;

}

So now that we see the use of different containers, |ets see what we have available:

deque A deque (double-ended queue) is a sequence container that supports fast insertions and
deletions at the beginning and end of the container. Inserting or deleting at any other
position is slow, but indexing to any item is fast. The header is <deque>. Pg 470

deque supports: [], at(), front(), back(), push front(), push back(), pop_front(),
pop_back(), empty(), size(), ...

list A list is a seugence container that supports rapid insertion or deletion at any position, but
does not support random access. The header is <list>. Pg 559

vector A vector is a sequence container that is like an arrays, except that it can grow in size as
needed. Items can berapidly added or removed only at the end. At other positions, inserting
and deleting items is slower. The header is <vector>. Pg 722

Practice: Implement a short program (the whole program) that
» declares a deque of type float

» add the elements 1.234, 12.34, and 123.4

prints the first element
» removesthefirst element
* prints how many elements are in the deque

#i ncl ude <i ostreanp

#i ncl ude <deque>

usi ng nanespace std;

int main()

{
deque<float> f;
f. push_back(1.234);
f. push_back(12. 34);
f. push_back(123. 4);
cout << f.front() << " ";
cout << f.at(0) << " ";
cout << f[0] << endl
f.pop front();
cout << "There are " << f.size() << " elenments left!";
cout << endl

111

The STL

return O;

}
lterators

Since all the containers have a different implementation, we need a standard way of going through
all theitems.

These things are called "iterators".

We are adready used to iterators, we just didn't know it; For vector and arrays we used integers. We
ran theses from 0 to size()-1. Therefore this"int" was an iterator.

Iterators use alot of operator overloading to behave similar to pointers.
Declaring: To declare an iterator use the subclass "iterator" for your specific data type. Example:

vector<int> a; // Your vector a
/1 ... a lot of a.push_back()

// The actual declaration:
vector<int>::iterator it;

There are two standard functions for iterators:
begin() returns an iterator pointing to the first element
end() returns an iterator pointing after the last element

Iterators can be advanced with the ++ operator (some can go backwards with --) and compared with
the == or != operator. To run over all element, you can therefore use:

it = a.begin();

while (it!=a.end()) {
/1 .
it++;

}
Or quicker:
for (it = a.begin();it!=a.end();it++) { ... }

To get the element an iterator pointsto, you act asif iterator would be a pointer and use the dereference
operator *. Example:

cout << *it;

Practice:

Assume you have given the following declaration:

i st<char> |;

[. push_front('1");

| . push_back('a');

[. push_front('b");

Write afor loop that uses an iterator to iterate over | and print al the contents of thelist.
list<char>::iterator |i;

for (li=l.begin();li!=l.end();li++)
cout << *li;

112

The STL

Print just the second element (emulate at(1))

list<char>::iterator |i;
i =1.begin();

li++, // can not use |
cout << *|ij;

=li+l1l in this case

All of these containers support insert() and erase(), but we had to introduce iterators first.

iterator erase(iterator p)

iterator insert(iterator p, T X)

erases the item that p points to. erase returns an iterator that
pointsto theitem that comesimmediately after the deleted item
or end().

insertsx immediately beforep and returnsaniterator that points
to the newly inserted element x.

Warning: Iterators may become "invalid" after an insert or a delete operation! Y ou should therefore

use the return value if possible!
Example:

vector<i nt> v;
!/

/1 sanme as p.pop_front(),

v.erase(v. begin());

woul d it exist.

A more complex example: Delete all occurences of "42" in alist:

list<int> |;
/1
list<int> :iterator i = |
while (i!=l.end()) {
if ((*1) == 42)
i =1I1.erase(i);
el se
i ++;
}

Another example:

list<int> :iterator i = 1|

. begin();

. begin();

/1 insert the nunber 0 at the begi nning

i =1l.insert(i,0);

/1 nmake sure i points after the first el ement

i ++;
Practice;
Assume this given deque:

deque<i nt> d;

/1 d gets filles with sone val ues

Write aloop that inserts a 42 before every occurence of 0in d. Two hints:

* iteratorsto adegue become invalid after insertion. Make sure you use the return value!

 don't write an infinite loop!

deque<int>::iterator i = d.begin();

while (il=d.end()) {

113

The STL

if (*i == 0) {
i =d.insert(i,42);
i ++;
i ++;
}
Possible test question:

For a server application you need to write a FIFO (first in, first out) queue, so that all incoming jobs
are processed in the order they arrive. Which STL container would you use for such a queue and why
(1-2 sentences)?

Associative Containers

An associative container contains keys that can be quickly associated with values. Thereis:

map Storesapair of keysand associated values. The keys determinethe order of the elements
in the map. map requires unique keys. Header: <map>. Pg 202

multimap same as map, but allows duplicate keys. Header: <map>. Pg 608

set Stores just keysin ascending order. Set requires unique keys. Header: <set>
multiset same as set, but allows duplicate keys. Header: <set>

To declare a map we need two datatypes, the key and the value datatype:
map<string,int> m

We can then use keys of the given type asindex to store and retrieve contents:

nf"Jan"] 1;

n{ " Feb"] 2;
cout << nf"Jan"] << endl;

Most operations on map can take akey as parameter where we usually haveto useiterators, e.g. erase:
m er ase("Jan");

Trying to use an element that was not set worksfine. If the valuetypeisaclass, then it will even create
anew abject for you (calls the default constructor).

cout << nm{"Mar"] << endl;
Practice:

To map from student id's to name it is usually wise to use a map, since we do not want to create an
array with 10000000000 elments.

» Define avariable of amap type with "long" as keytype and "string" as valuetype
* Fill in two random students of your discretion (do NOT use your real SSN!!!)

map<l ong, stri ng> students;

st udent s[123456789] = " Sone";
st udent s[987654321] = "One";
st udent s[987654321] = "El se";

Aniterator over amap<K,V> will give you apair<K,V> for every element you access (thisisthereal
pair which is differnt from the one we used in lab).

114

The STL

You can access the key in the member variable first, and the value in the member variable second.
Thanks to operator overloading you may either use the dereference (*) or the dereference and access
member (->) operator (or both, as you wish). Example:

for (map<string,int> :iterator i=mbegin();i!=mend();i++) {
cout << (*i).first << " " << i->second;

}

Practice:

Using an iterator, iterate over your students map defined earlier. For every student print something
like this on the screen (remember: first is the key, second is the value):

St udent: Max Ber ger
Student 1D 123456789

map<l ong, string>::iterator si;
for (si=students.begin();si!=students.end();si++) {
cout << "Student: " << si->second << endl;

cout << "I Dt

}

<< si->first << endl;

lterator categories

There are five categories of iterators:

Input

Output

Forward

Bidirectional

Random access

Permits you to read a sequence in one pass. The increment operator (+
+) advances to the next element, but there is no decrement operator. The
dereference operator returns an rvalue, not an Ivalue, so you can read elements
but not modify them.

Permits you to write a sequence in one pass. The increment operator (++)
advances to the next element, but there is no decrement operator. You can
dereference an element only to assign avauetoit. Y ou cannot compare output
iterators.

Permits unidirectional access to a sequence. Y ou can refer to and assign to an
item as many times as you want. You can use a forward iterator whenever an
input or an output iterator is required.

Similar to a forward iterator but also supports the decrement (--) operator to
move the iterator back one position. Example: list<>::iterator.

Similar to bidirectional iterator but also supports the subscript [] operator to
access any index in the sequence. Also, you can add or subtract an integer to
move arandom access iterator by more than one position at atime. Subtracting
two random accessiteratorsyields the distance between them. Y ou can compare
two random iterators with < or >.Thus, a random access iterator is most like
a conventional pointer, and a pointer can be used as a random access iterator.
Examples. deque<>::iterator, vector<>::iterator.

We will hardly every see anything but bidirectional and random access iterators. But it is important
to know the other types exist.

With the exception of output each of these iterators includes all of the above. (abidi is also forward

and input, €tc.).

In this example we use the fact that we can do math with iterators to find the index of elements that

match a certain value.

vector<int> v;

115

The STL

. push_back(1);
. push_back(2);
. push_back(2);
. push_back(3);

< < < <

for (vector<int>: :iterator i=v.begin();i!=v.end();i++) {
ifo((ri) ==2) {
cout << "| found the nunber 2 at index " << i - v.begin() << endl;

}
}

Practice:

Assume the vector definition from above. Write afor loop that uses an iterator to output every other
element. Actually advance theiterator by 2. Here you'll have to use the < operator instead of !=.

for (vector<int>::iterator i=v.begin();i<v.end();i+=2) {
cout << *i << endl;

}
Algorithms

The STL also provides some standard algorithms. There are way to many to list here, but they all work
pretty much the same way. | have selected some random ones:

unsigned count(Inlter first, Inlter countsall elementsin therange [first, last[that match the given

last, T value) value.
Fwdlter max_element(Fwditer returns an iterator that pointsto the larges element in the range
first, Fwditer last) [first,last[. (can you guess what min_element does?)

Initer find(Inlter first, Inlter last, T returns an iterator to the first occurence of value in the range
value) [first,last].

void sort(Randlter first, Randlter sortsthe elementsin [first,last] to be ascending. The valuetype
last) of the container must support the operator<

void random_shuffle(Randlter first, randomly shuffles the elementsin the range [first,last].
Randlter last)

count and find require an Input Iterator or better, maxElement requires a forward iterator or better,
sort and random_shuffle require a random access iterator.

There are about 66 algorithmin the STL. For acomplete reference, read Pg. 270-274 and Pg 328-369.
To use agorithms, you have to include the <algorithm>

| want you to know the five algorithms given here, If you need to know other ones then I'll provide
the reference.

Example:

list<int> |;

| . push_back(1);
| . push_back(2);
| . push_back(1);
| . push_back(3);

/1 There are two 1's in there, so this will print 2
cout << count(l.begin(),!.end(),1) << endl;

116

The STL

Practice: Print out the value of the largest element in 1.
cout << *(max_el enent (I.begin(),!.end()));
Here is another example:
vector<i nt> v;
for (int i=1;i<100;i++)
v. push_back(i);

random shuffl e(v. begin(),v.end());

cout << "The largest elenment is now at ";
cout << max_el enent (v. begin(),v.end())-v.begin() << endl;

117

Part Ill. wxWidgets

Table of Contents

I 1 110 o (8 [o o PSPPI 120
What @re GUI tOOIKITS?iieiiiieiiii et 120
WHhat 1S WXWIAGEIS? . oeenieiii e e e e e e e e e e e anas 121

18. A small WXWIAQELS PrOGIaMuueiiteeiiee e e et e e e e e et e e e e e e e e e eanas 122
THE COUE ...ttt e et e et a e 122
GUI EIements @S OBJECESuiiiniciii eaen 123
Event driven programimingceu.eeeueioren e e e e e e e e e e 123
L g oo o (= TP 124
0 T o L=] - 125
T2 A o] o S 125
WXFTBIMIE L.ttt aes 125
WXIMIBNUBAY ... ittt ettt ettt et et e e e e e et e e e e ean e eeen 125
SEBEUS Beeeieiiie ettt ettt eeas 126

e T T o = TR o o N 127
/2o (o] gTo = o011 oo T 127
= 1Yo 1 o P 127
07 7= YT oL | 129

119

Chapter 17. Introduction
What are GUI toolkits?

GUI Graphical User Interface
The problem:

e There are many OSes out there

Every OS looks different
» There must be some way to get buttons, windows, etc.
* Thereisno common standard!

Unfortuntely, every OS has a different "windowing system"

Unix / Linux uses X11.
MacOS X uses Aqua
Windows uses Win32 API.

Programming for these systems direct is not much fun. It involved plain C (no C++).
Therefore, people have written toolkits.

Toolkit In computer programming, widget toolkits (or GUI toolkits) are sets of basic building
elements for graphical user interfaces. They are often implemented as a library, or
application framework.

Some very common Toolkits are:

Motif build on top of X11, writtenin C.

GTK (Gimp Tool Kit) build on top of X11, written in C. A windows version is
available, but not as stable.

QT Written in C++. The X11 version is free, the windows version
iscommercial.

Carbon Build on top of Aqua. Writtenin C.

Cocoa Build on top of Agqua. Written in Obj-C.

MFC (Microsoft Foundation Build on top of Win32. Written in C++. Only available with

Classes) Visua Studio

VCL (Visual Component Library) Build on top of Win32. Written in C++. Only available with
Borland compilers.

wxWidgets Cross-Plattform. Works on top of X11, Carbon, or Win32.
Written in C++. Freely available for most compilers.

There are many, many other toolkits. Thisisjust asmall selection.
Unfortunately most of these toolkits do not come standard on the respective OS. That means:

» When you develop, you need to make sure the development portion of the toolkit you are using is
installed on the machine

120

Introduction

* When you deploy, you need to ensure that the deployment portion of the toolkit is on the users
machine. For windows, this means .dll files.

What is wxWidgets?

wxWidgets...

» was formerly called wxWindows

* has been around since 1992

 provides acommon interface for GUIs on MacOS, Windows, Unix
* provides other functionality as well (threads, HTML viewing, etc.)
For more information and documentation, please see:

o www.wxwidgets.org [http://www.wxwidgets.org]

» max.berger.name/howto/wxWidgets [http://max.berger.name/howto/wxWidgets]

121

http://www.wxwidgets.org
http://www.wxwidgets.org
http://max.berger.name/howto/wxWidgets/
http://max.berger.name/howto/wxWidgets/

Chapter 18. A small wxWidgets
program

The code

/*
* hworl d. cpp
* Hello world sanple by Robert Roebling
* Adapted for unicode by Max Berger
*/

#i ncl ude "wx/wx. h"

cl ass MyApp: public wxApp
{

b

virtual bool Onlnit();

cl ass MyFrame: public wxFrane

{

publi c:
MyFranme(const wxString& title,

const wxPoi nt & pos, const wxSize& size);

void OnQuit (wxCommandEvent & event) ;
voi d OnAbout (wxCommandEvent & event) ;
DECLARE_EVENT_TABLE()

1

enum

{
ID Quit = 1,
| D_About,

1

BEG N_EVENT_TABLE(MyFr anme, wxFrane)
EVT_MENU(I D_Quit, MyFrane:: OnQuit)
EVT_MENU(I D_About, M/Frane:: OnAbout)

END_EVENT_TABLE()

| MPLEVENT_APP(MyApp)

bool MyApp:: Onlnit()
{
MyFrame *frame = new MyFrame(wxT("Hello World"),
wxPoi nt (50, 50), wxSi ze(450, 340));
frame- >Show(TRUE) ;
Set TopW ndow(f rane) ;
return TRUE;

122

A small wxWidgets program

}

MyFrane: : MyFrame(const wxString& title,
const wxPoi nt & pos, const wWxSi ze& size)
wxFrame((wxFrame *)NULL, -1, title, pos, size)

{
wxMenu *nenuFil e = new wxMenu;
menuFi | e- >Append(|1 D_About, wxT("&About..."));
menuFi | e- >AppendSepar at or () ;
menuFi | e- >Append(ID Quit, WT("E&it"));
wxMenuBar *nenuBar = new wxMenuBar
nmenuBar - >Append(menuFile, wWT("&File"));
Set MenuBar (nenuBar);
CreateStatusBar();
Set St at usText (wxT("Wel cone to wxW ndows!"));
}

void MyFrane: : OnQui t (wxCommandEvent & WKUNUSED(event))

{
C ose(TRUE) ;
}
voi d MyFrane: : OnAbout (wxCommandEvent & WKUNUSED(event))
{
wxMessageBox(WxT("This is a wxW ndows Hello world sanple"),
WXT(" About Hello World"), wxOK | wxl CON_| NFORMATI ON, this);
}

GUI Elements as objects

GUI programming fits very nicely in the object-oriented methodol ogy.

Every type of thing that can be displayed on the screen is a class. Example: for the wxFrame class
for windows.

If we need a specialiced version, we can subclass the default class for our own behavior. For example:
MyFrame in the example. Could also be DocumentWindow, SettingsWindows, GameFrame, etc.

The actual item displayed on screen is an instance of that class. For some types of windows, there
will be only one instance (example: preferences), for some, there wil be multiple instances (example:
multiple browser windows).

Event driven programming

In classical programming, we arein control of the control flow.
In GUI programming the user is.
So what do we do? We would need to do something like this (thisis not actual code!):

while (true) {
event = waitForUserTod i ckSonet hi ng();
processEvent (event);

123

A small wxWidgets program

}

and thisis acutally the way it is donein classical GUI programming. But we are thinking in terms of
classes and objects, and messages between these objects.

So when the user clicks somethings, we want a message to be sent to some object.
We need to tell the computer what event should be sent to which object.
Thisisthe purpose of the event table. It describes which methods should be called on which event.
The EVENT macros implement this behavior for us.
It can aso be done programmatically (see wxWidgets documentation).
Inside your declaration, use this:
DECLARE_EVENT_TABLE()

Inside your implementation file, use something like this:
BEG N_EVENT_TABLE(MyFr ane, wxFrane)

EVT_MENU(I D_Quit, MyFrane:: OnQuit)

EVT_MENU(| D_About, MFrane: : OnAbout)
END_EVENT_TABLE()

Thiswill implement an event handler for the class "MyFrame" which is subclassed from "wxFrame".
For the menu event with theid "ID_Quit" it will call the method "OnQuit" from "MyFrame". For the
menu event with theid "ID_About" it will call the method "OnAbout".

Prefixing event methods with "On" isjust a convention and not required. But it isagood idea.

Unicode

Regular ASCII character codes use values0..255 (char datatype). Thisisgood for english letters (there
are 26 lower case, 26 upper case, 10 numbers, and some symbols), but it isinappropriate for languages
like chinese.

Therefore a larger character set was defined by the UNICODE consortium. (see www.unicode.org
[http://www.unicode.org/]). In unicode, each character uses 4 (sometimes 2) bytes. Modern GUI
toolkits should provide support for unicode.

When compiling wxWidgets, you have a choice to do so. If you have the Mac OS X version of you
have compiled it with my instructions, your wxWidgets is the unicode version.

Unfortunately, when wedefineastringusing " it is by default the old version of the string (an array of
char). So we need away to convert from classical stringsto unicode strings. We use the wxT() macro
to do so. Example: wxT("Hello") would result in a unicode-string representing Hello.

To represent unicode characters, use the wxChar datatype.

To represent unicode strings, use the wxString datatype. It behaves almost the same asthe STL string
datatype.

Short rules:
» Always use wxChar instead of char.

» Alwaysenclose literal string constantsin wxT () macro unless they're already converted to the right
representation or you intend to passthe constant directly to an external function which doesn't accept
wide-character strings.

124

http://www.unicode.org/
http://www.unicode.org/

A small wxWidgets program

» UsewxString instead of C style strings.

Please note: If you have compiled wxWidgets yourself, you version may not use unicode. In this
case, the above macros will still work, and default to the non-unicode version. (e.g. wxT() will not do
anything). However, | will test your program on an unicode version! So unless you have the wxT()
macros, you | will get compiler errors and you loose points. Please either recompile wxWidgets or
test your program in the lab!

Multiple files

The above program should be broken up into multiple files. The definitions should be in the header
files, the implementation in implementation files. The IMPLEMENT_APP and EVENT_TABLE
macros should be in the implementation files for that class.

WXAPP

Is the base class for your application. Y ou usually want to override it, and override implementations
for:

* virtual bool Onlnit()
e virtual int OnExit()

There are also some other functions that can be overriden. Please see the wxWidgets documentation
if you'reinterested.

The most important step in the initialization is to create a frame, make it visible, and make sure it is
the top window.

wXxFrame

Base class for al windows on the screen (wxWidgets calls them frames). You will override this at
least once, for your main window type. If you have multiple different windows, you will have multiple
wxFrame subclasses.

wxMenuBar

used to add a menu to your window.

Thetop most level isawxMenuBar. A menu bar may have multiple Menus. Y ou can set the menubar
for awindows with the SetMenuBar() method.

A Menu has
* regular entries
* separators
» submenus

Mac users "think different”. In their view, it is not the windows that has a menu, but the active
application. They also want "Exit" to be called "Quit" and to be in the application menu instead of
the File menu. Fortunately we do not need to worry about this, wxWidgets will do that autmatically
for us. We do need to know about it, since our menus may move without us noticing. Please note that
wxID_ABOUT and wxID_EXIT are predefined by wxWidgets for that exact purpose.

There are many standard event identifiers for all the default menu items. Please use them whenever
possible! See www.wxwidgets.org/manual§/2.6.3/wx_stdevtid.html [http://www.wxwidgets.org/
manuals/2.6.3/wx_stdevtid.html] for a completelist.

125

http://www.wxwidgets.org/manuals/2.6.3/wx_stdevtid.html
http://www.wxwidgets.org/manuals/2.6.3/wx_stdevtid.html
http://www.wxwidgets.org/manuals/2.6.3/wx_stdevtid.html

A small wxWidgets program

Status Bar

A specid part of any wxFrame. Can be used to display messages. wxFrame offers two methods for
use with status bars:

void CreateStatusBar() creates a status bar on that window. Call it only once and in the
constructor for your wxFrame.

void SetStatusText(wxString text) sets the text in the status bar. May be called from everywhere
in your wxFrame, e.g. when a menuitem was selected.

Use the status bar to display additional information.

126

Chapter 19. Filling a window
Adding a button

lets add a button to our sample program. In the constructor for the frame, we add:
new wxButton(this, wxlD_YES);

This will create a new button. The parent window for the button will be the frame (this). The id will
be wxID_OK which is the default 1D for any OK button. the wxButton constructor has many more
optional arguments:

wxBut t on(wxW ndow* parent, wxW ndowi D id,

const wxString& | abel = wxEnmptyString,

const wxPoi nt & pos = wxDef aul t Position,

const wxSi ze& size = wxDefaultSize,

long style = 0,

const wxVal i dat or & val i dator = wxDef aul t Val i dat or,
const wxString& name = "button")

Theindividual parameters are:

parent the parent window for the button. In this case, it is the current frame. In many cases,
this can be a panel, a notebook, etc.

id the ID for theitem. Connect thisviayour event tableto call your functions. If you use
default ids you will get default behavior.

pos the position of the item, given from the top-left corner of the parent. Use wxPoint(int
X, int y) to create a point object.

size the size of the item. Use wxSize(int width, int height) to create a size object.

style extra style attributes. can be any combination of: wxBU_LEFT, wxBU_TOP,
wxBU_RIGHT, wxBU_BOTTOM, wxBU_EXACTFIT, wxNO_BORDER joined
with alogical or (|). Example: wxBU_LEFT | wxNO_BORDER

validator avalidator can be used to check input dataand have input data automatically retrieved
and stored in avariable. Thisis useless for buttons, but useful for text fields.

name anamefor the control. Absolutely useless on modern systems. L eave the default value
in there.

Please note: Even though we did not set thelabel, and it defaultsto an empty string, the button will still
display "Yes'. Thisis because we use the default id for a"yes' button. On an international machine
this will automatically trandate into the language that is set, e.g. "Ja"' on a German machine, "Si" on
a Spanish one, etc.

Practice: Add anew button labeled "Bla' with the event id "ID_BLA". It should be at position 50,30
in the window, and have no border.

To connect abutton, usethe EVT_BUTTON in your event table:

EVT_BUTTON(wxI D_YES, MyFrane: : buttonPressed)

Layouting

Using the pos and size parameters we can now add buttons to awindow and specify where they should
be at. We can manually control the layout of awindow.

127

Filling awindow

But what if the window is resized? What about the difference in button size on OS X / Linux /
Windows? For these things, we need automatic layout. wxWidgets offers this through "Sizers'. A
more common term is"Layout Managers'.

We will look at the wxBoxSizer class. The boxSizer class supports horizontal or vertical stacking of
controls. Each boxSizer may contain other boxSizers.

Figure 19.1. Sample stacked box Sizers

PersonalRecordDialog

Vertical wxBoxSizer

Vertical wxBoxSizer

I l

I

Horizontal wxBoxSizer

Spacer

I

Horizontal wxBoxSizer

To support automatic layout, each control has a minimum size, or sometimes called "best size". It will
report that back to the sizer for layouting.

To use sizers, first create an object of the wxSizer class, using either wxVERTICAL or
WXHORIZONTAL as parameter.

wWxBoxSi zer *sizer = new wxBoxSi zer (WxVERTI CAL);
Y ou may then add elements, either controls, or other spacers:

voi d Add(wxW ndow* wi ndow, int stretch=0, int flags=0, int border=0);
voi d Add(wxSi zer* wi ndow, int stretch=0, int flags=0, int border=0);

Where the parameters mean:
window the element to be added to that sizer

stretch astretch factor. If the sizer islarger than the sum of its contents, what should happen? If
the stretch factor is 0, the elements will stay the same size. If it is> 0, then each element
will be stretched in relation to the sum of all stretch factors.

flags defines additional info for resizing:
0 the client window will preserveitssize
WXGROW the client window will grow to fill the space
WXLEFT, wxRIGHT, wxTOP, specifies where the borders go
wxBOTTOM
WXALL border on al edged (= wxLEFT | wxRIGHT |

WXTOP | wxBOTTOM)
border size of the border

128

Filling awindow

To set asizer, use the SetSizer(wxSizer sizer) method
Example:
Adding two buttons, on top of each other, with a 10 pixel border around them:

wxBoxSi zer *sizer = new wxBoxSi zer (WwxVERTI CAL) ;

si zer - >Add(new wxBut t on(t hi s, wxl D_YES), 0, wxALL, 10);
si zer->Add(new wxBut t on(t hi s, wxl D_NO), 0, wxALL, 10);
Set Si zer (si zer);

Practice:

Create two buttons " Ok" and "Cancel" (wxID_OK and wxID_CANCEL) and add them to a horizontal
sizer, with Ok on the left and Cancel on the right. Put a small border (2 px) around the buttons.

You can create "static text" (text that cannot be changed by the user) using the wxStaticText class.

wx St at i cText (wxW ndow* parent,
wxW ndowl D i d,
const wxString& | abel,
const wxPoi nt & pos wx Def aul t Posi ti on,
const wxSi ze& si ze wxDef aul t Si ze,
long style = 0,
const wxString& nane = "staticText")

Most parameters are similar to the ones for the button. Label describes the contents of the text. You
may change the label later using the void SetL abel (const wxString& label) function. Please note: To
change the labdl later, you will need to keep a reference to it. A good idea would be to declare an
attribute for the changing label, and to use that. Example:

cl ass MyFrame: public wxFrane

{
private:

wxSt ati cText *soneText;
/Il...

wxBoxSi zer *sizer = new wxBoxSi zer (wxVERTI CAL) ;

someText = new wxStaticText(this,wkl D ANY, wT("This is a Text"));
si zer->Add(soneText) ;

si zer->Add(new wxButton(this, wxl D_OK), 0, wxALL, 2);

Set Si zer (si zer);

...

someText - >Set Label (wxT("Ck, Ok, i give up!"));

Warning! If you're widgets get much bigger / smaller, you will haveto tell youre sizer(s) to re-layout.
For this, you will have to keep them in an attribute as well. Example:

private:

wWxBoxSi zer *si zer;
/...
si zer->Layout () ;

And, last but not least you may resize your window to fit the contents. Use the Fit(wxWindow&)
method for that. Example:

sizer->Fit(this);

data input

There are two methods of data inputs:

129

Filling awindow

* Reading directly from the control widgets

» Providing validators

130

