
Integrated PIM data
management with SyncML

Maximilian Berger
Technische Universität München

Integrated PIM data management with SyncML
by Maximilian Berger

Published 2002
Copyright © 2001, 2002 by Maximilian Berger

Please freely copy and distribute (sell or give away) this document in any format. It's requested that corrections

and/or comments be forwarded to the document maintainer. You may create a derivative work and distribute it

provided that you:

1. Send your derivative work (in the most suitable format such as sgml) to the author for posting on the Internet.

2. License the derivative work with this same license or use GPL. Include a copyright notice and at least a pointer

to the license used.

3. Give due credit to previous authors and major contributors.

If you're considering making a derived work other than a translation, it's requested that you discuss your plans with

the current maintainer.

Table of Contents
I. Introduction ..vii

1. Motivation..1
2. Infrastructural overview...4
3. Evaluating complete solutions for data synchronization...............................6

Starfish TrueSync...6
Palm Desktop...8

4. Protocols and data formats...10
Protocol, transport, data...10
Data types...11
The Versit format...11

vCard structure...12
8-bit encoding..12
Selected vCard properties..12
Changes in vCard 3.0...13
Summary..14

iCalender and iTIP...14
Lightweight Directory Access Protocol (LDAP).....................................15
SyncML..17

5. Existing SyncML implementations...21
sync4j...21
SyncML Reference Toolkit (RTK)..22
Hardware devices...22

II. Synchronization concepts...24

6. Synchronization basics...25
What is synchronization?...25
Database operations...25
Soft deletion and hard deletion..26
Disconnected operation..26
Unique identifiers...26
Transaction logs...27
Regular sync...27
Slow sync...28
One-way sync...28

7. Handling conflicts..29
Changed on two clients..29
Merging entries..29
Deletion conflicts...31
Detecting existing entries...31

Comparison by points..31
Example...32

iii

Special last name handling...33

III. Realization ..35

8. Raw design...36
Requirements...36
The concept..36

9. Libsyncml..38
Design issues..38

Event parsing or tree parsing?..38
Multiple sessions, single databases?..38

User visible..39
SMLType..39
SMLURI ..39
SMLDevInf..40
SMLSessionHandler..40
SyncMLDatabase...40
SyncMLSingleThread..40
SyncMLMultiThread...40

Internal...41
SMLTreeNode..41
SMLNamespaceContainer...41
SMLFlattener...42
SMLResponsePacket...42
SyncMLParserCallback...42
SyncMLParser..42
SMLSession...42

10. Sync Server Engine..43
Configuration...43
Back-end database...43
Database model..43

Users..44
Groups..44
GroupMap..44
Map..44
Client..45
Types..45
Entries..45

Security..45
11. vCardSync..47

Libversit...47
Invoking vCardSync...47
The sync process..48

iv

IV. Perspective..49

12. Application and future uses...50

V. Appendix ..52

A. Used software and tools..53
B. Acknowledgements...54
Glossary...55
Bibliography..58

v

List of Tables
2-1. Overview of some PIM databases..4
7-1. Merge example setup..30
7-2. Modified data..30
7-3. Client A has synchronized..30
7-4. Data after merge...30
7-5. Example Setup..32
7-6. Example Data (Client)..32
7-7. Example Data (Server)...32
7-8. Comparison Points..33
7-9. Merged Example Data..33

List of Figures
2-1. Different clients and how they connect..4
3-1. How starfish sees its own products...6
3-2. Palm Desktop showing monthly and daily calendar view..................................8
4-1. Transport, Protocol, Data..10
4-2. An example LDAP tree...15
4-3. Writing to a replicated LDAP node..16
4-4. SyncML session time line...18
8-1. Concept overview...37
9-1. Overview of SMLSingle/MultiThread, SMLSession, SMLSessionHandler and

SMLDatabase...39
9-2. A tree node object...41
10-1. SySeEns database model..44

List of Examples
4-1. Minimal version of my personal vCard..12
4-2. Minimal version of my personal vCard, version 3.0..14

vi

I. Introduction

Chapter 1. Motivation

When an actor comes to me
and wants to discuss his
character, I say, “It's in the
script.” If he says, “But what's
my motivation?”, I say, “Your
salary.”

Alfred Hitchcock

For a long time, communication devices were dumb. When I wanted to call a friend,
I would take out my paper organizer and look up the phone number. Then I would
punch it into the phone, getting just the desired results. And when my friend sug-
gested a date, I would take a pen and note it in the same organizer.

But the times have changed rapidly. Today, I do not have a paper organizer anymore,
I have a Palm Pilot™. I do not type in numbers into my phone anymore, it has an
address book. So does my phone at work, and of course my mobile phone. And this
is where the problems begin:

Whenever I get a new contact, I have to enter his phone number three times. After all,
I want to be able to reach him from home and work, and of course from my mobile.
Ok, you might say, most of my work contacts I would not call from home and the
other way round, but this is just evading the problem instead of solving it. A real
solution would be to let those Personal Information Manager (PIM) devices talk to
each other.

And such software really exists. I can synchronize my Palm address book with MS
Outlook, or with Gnomecard. I have even found software for synchronizing my mo-
bile phone with MS Outlook or with the Palm address book. So the current solution
is to adopt every singlePIM device to work with every other singlePIM device.

Obviously that this is not a very good solution. One good solution would be to stan-
dardize the synchronization protocol and to standardize the data being synchronized.
The goal of this thesis is to analyze one of theses approaches and to try to implement
a fully working version.

This solution comes mostly from the vendors of mobile phones and PIMs. They were
tired of supporting every single product. So most of the larger ones (Ericsson, IBM,
Lotus, Matsushita, Motorola, Nokia, Openwave, Starfish Software and Symbian are
mentioned on the SyncML web sitehttp://www.syncml.org) started and sponsored
the SyncML project.

According to its web site, “SyncML is the leading open industry standard for uni-
versal synchronization of remote data and personal information across multiple net-

1

Chapter 1. Motivation

works, platforms and devices.” In reality, SyncML is the only industry standard for
synchronization ofPIM data.

SyncML defines a basic client - server interface for exchanging personal data. Basi-
cally, any devices can act as a server or a client. The requirements for a server are
much higher, though. And to avoid complete data confusion, this approach leads to
one central server.

The SyncML standard describes only the way data is exchanged, but not the format
of the data itself. Is does, however suggest some formats, such as vCalender and
vCard and even requires them for certain applications. SyncML itself is described in
anXML syntax.

Since SyncML is supposed to be an “open” standard, the suggestion may occur, that
there are already some open tools for it. There is a reference implementation and
some java projects that will be discussed later.

And this is where the brave new world already ends. There is currently no working,
fully implemented C or C++ library. And when it comes to common open source
projects such as Gnomecard or Kab, none of them implement SyncML, not even as
client. And when it comes to a server back-end with a real scalable database, there is
yet an open-source implementation to be made.

To build a prototype this project has therefore to design and to create a SyncML
application. In particular, the goals are to:

• create a full SyncML featured C++ library, that implements all requirements for
SyncML 1.01

• adapt an existing open-sourcePIM client to use this library for acting as a SyncML
client.

• write a full featured SyncML capable server which is able to store calender data.

SyncML is an event based protocol. The library must have a way of calling back into
the main program and of selecting explicit data record without having to know their
content. The basic idea here comes from anotherXML programming implementa-
tion: SAX. In SAX, the parser itself is an object. Whenever an event gets fired, the
appropriate method gets called. A programmer has to extend the basic parser class
and overwrite the methods that need to be customized.

The same idea will be used in the SyncML library. Ideally, all configurable parame-
ters and functions have reasonable defaults, so that the library can be effectively used
out-of-the-box.

With this library, the client part is actually pretty easy: Both, Gnomecal and KOr-
ganizer, store their data in the standard vCalender format. So an application, which

2

Chapter 1. Motivation

reads a vCalender file and synchronizes it, will meet the requirements, and would be
even more extensible.

Unfortunately, the same is not completely true for the address book data. Gnomecard
uses the standard vCard format, and will therefore be supported. Kab on the other
hand uses a proprietary format, which would need more customizing.

The server application has other issues to solve. To be able to sync data, it must
keep complete logs which data has changed on which client. This data is needed
to determine which entries must be synchronized. Also, the server must remember
which clients it has previously synced to. There is a lot of data to store about the
client: type of client, its capabilities, localUIDs, etc. Whenever the same data has
changed on more than one client, the server must have a way of finding out which
new data to keep and where to merge.

Keeping all this information in the server leads to another important issue: The data
structures must be capable of holding all this information. The question is, how de-
tailed the change logs have to be, which information is kept about the clients, etc.

To conclude, the necessary steps are:

• Design a concept for a complete client - server architecture for distributed man-
agement of PIM data

• Design data structures, especially on the server for keeping the information

• Define, how the clients and server actually connect

• Implement the SyncML protocol

• Implement a client and server prototype

3

Chapter 2. Infrastructural overview

There is no reason for any indi-
vidual to have a computer in his
home.

Ken Olson, President, Digital
Equipment, 1977

Let us take a step back and look at the problem again: Electronic PIMs are currently
not very usefull, because each has its own database and it is very hard if not im-
possible to keep all of them in sync. The goal is to find some way to keep the data
consitent on as many devices as possible.

To design a solution for all devices, we have to find out which devices exist and what
their capabilities are.Table 2-1gives an overview of some PIM databases:

Table 2-1. Overview of some PIM databases

Device Examples Type of Data Capabilities
Cell phone Nokia

Communicator
Phone Numbers very small in memory

PDA Palm Pilot,
Compaq iPAQ

Addresses,
Schedule, Notes

medium in memory and
computing power

Desktop Organizer MS Outlook,
Gnomecard

large memory, fast
computing

Relational Database MySQL Any very large memory, not
only for PIM data

The next step is evaluation how those devices connect. As said earlier, most of them
already have some kind of network connection.Figure 2-1gives us a a little view on
how those devices typically connect.

4

Chapter 2. Infrastructural overview

Figure 2-1. Different clients and how they connect

Internet

W
M

L

TCP/IP

IrDA
OBEX

TCP/IP

TC
P/

IP

PDA Cell Phone

Laptop

Desktop
Computer

Server

As you can see, the whole situation is pretty complicated. Different architectures
have to be considered, and different transports. But the most difficult to consider are
the different types of clients: server class, workstation class and thin clients.

As suggested earlier, we will reduce the problem to a much simpler client - server
problem. When looking atFigure 2-1the only problem left is the desktop computer.
The application here would have to act as a client to the central database sever and
as a server for the mobile devices.

Even simpler, we could write a proxy application for the desktop computer. The thin
clients would communicate with an adapter program on the desktop computer. Then
the adapter program would handle all communications with the actual server.

Having solved the “desktop computer” issue enables us to build an approach on the
base of TCP/IP. No other protocols need to be supported directly. It also enables us
to reduce this problem to what we wanted: a simple client - server problem. Now all
that is left is implementing a server, a client, and also a common protocol...

5

Chapter 3. Evaluating complete
solutions for data synchronization

Well done is better than well
said.

Benjamin Franklin

Before deciding which method to use for data synchronization, several solutions have
to be evaluated. Based on this we can decide which one best satisfies our demands.
The first thing to look for is a complete working solution that already provides syn-
chronization with various data sources.

Starfish TrueSync
When it comes to the terms of synchronization software, the first one to mention
is Starfish‘s TrueSync platform. Starfish is a company that was founded in 1994 in
California. It started out with a simple desktop organizer software but soon went over
to address data synchronization problems. Its main product is the TrueSync platform.
This platform can be adopted to almost every PIM client, and many PDAs. In 1998
Starfish even started creating an own server software.

Starfish was also a founding member of the SyncML initiative. Since all their prod-
ucts are based on the same TrueSync platform, they could easily be adopted to the
new SyncML platform.

Many vendors of small devices now licensed this software for use in their own de-
vices. The Starfish TrueSync platform is probably the most widely used in current
handheld devices.

6

Chapter 3. Evaluating complete solutions for data synchronization

Figure 3-1. How starfish sees its own products.

Starfish TrueSync addresses all mayor issues in synchronizing data across PIM de-
vices and desktop-based solutions. It works with the most common used organizer
programs such as Microsoft Outlook and Lotus Notes. It also works with all PalmOS
based PDAs, all Motorola cell phones, and many others.

There are two ways TrueSync supports a product: The manufacturer can license the
TrueSync software directly. The TrueSync platform is then adapted for this particular
device. The second way is by adding an apdapter which translates the device specific
commands to TrueSyncs own protocol.

But TrueSync does not only support client devices. There are desktop based solu-
tions called TrueSync Plus, TrueSync Express, and TrueSync SDK. TrueSync Plus
is a Personal Information Manager software. It supports the standard features for a
desktop PIM software, such as calender and address book. TrueSync Express is just
the adaptor between the TrueSync Protocol and existing PIM Software, such as Lo-
tus Notes or MS Outlook. TrueSync SDK is a sofware development kit that can be
used to adapt an own software to the TrueSync Protocol.

To complete its software spectrum, StarFish also offers server solutions and even an
Internet Planner to store and access the data.

7

Chapter 3. Evaluating complete solutions for data synchronization

For communication between the different software parts StarFish uses either a pro-
prietary TrueSync protocol or the newer SyncML protocol. This enables the software
to interoperate with all other SyncML conform applications and devices.

So why not just use TrueSync? It has everything that one could possibly want. The
answer is a question of money: Starfish currently does “not sell directly to end users
or in small volumes”. This makes it difficult if not impossible for an end user to
actually use this product.

Palm Desktop
Palm Desktop is another complete software suite that deserves to be mentioned. Its
main purpose is to synchronize any desktop PIM software with a Palm Pilot.

Figure 3-2. Palm Desktop showing monthly and daily calendar view.

The Palm Pilot was one of the first PIM devices available, long before other devices
such as mobile phones learned the capabilities for holding a sufficient amount of
personal information.

This new device also had the capabilities to load new programs and extend its func-
tionality. Therefore a communication with a PC and some kind of transmission pro-
gram had to be build.

And, most important, people would not enter all their data in the Palm Pilot itself,
but rather wanted to use a full size keyboard and their desktop PIM programs.

So, Palm made a software that could do all that: load programs, backup data, and
synchronize it with other databases. In case you do not have another database, the
Palm Desktop program itself is a complete PIM solution: It has a calender, address
book, and to-do list build in.

8

Chapter 3. Evaluating complete solutions for data synchronization

All other software can be synchronized with a Palm Pilot via plug-ins. Such a plug-
in is calledConduit. Conduits exist for almost all PC organizers, such as Outlook,
Gnome-pim, and KOrganizer.

Palm Desktop has two major shortcomings: The first one is very obvious: It only
works with devices that run Palm OS. This leaves out the second mayor PIM device
platform Windows CE and all current cell phones.

The second shortcoming is that Palm Desktop is build for synchronization of the
Palm Pilot with only one database. You could synchronize one Palm Pilot with two
computers, for example at work and at home, but this gives very strange results when
it comes to things such as deleting database entries.

Palm Desktop provides an extensible platform. It is a very good tool to access the
data on a Palm Pilot. The conduit concept makes it easy to extend, and this is what I
would use in future versions to access data on a Pilot.

9

Chapter 4. Protocols and data formats

It´s a well known fact that
computing devices such as the
abacus were invented thousands
of years ago. But it's not well
known that the first use of a
common computer protocol
occured in the Old Testament.
This, of course, was when
Moses aborted the Egyptians‘
process with a control-sea...

Tom Galloway

Protocol, transport, data
To classify the following specifications, we have to clarify first what is meant by the
terms transport, protocol, and data.

Figure 4-1. Transport, Protocol, Data

Transport

Protocol

...

DataProtocol Data

DataData

A transport does the actual connection. Its purpose is to establish a connection be-
tween two machines so that they can exchange data. The most commonly used is
TCP, but it could also be HTTP, OBEX, WML or IRDA.

The data is the actual data to be synchronized. It is usually marked up with very little
extra information to be easily parsable. The data formats explained here are vCard,
vCalender and iCalender.

10

Chapter 4. Protocols and data formats

A protocol describes how the data can be exchanged during a session. Some proto-
cols demand special data structures (e.g. LDAP), others provide support for different
ones (e.g. SyncML).

Data types
Another thing that has to be clarified is what types of data has to be managed and
what the requiremens for each data type are. The most common PIM data types are
calendar, address book, notes and to-do list.

Calendar

A calendar item specifies something that happens at a certain date, time or range
of either. It can be a one time event or repeat itself. PIM applications ususally
support some kind of alarm prior to the scheduled date.

Address book

Address book entries contain all kinds of whitepage information: First name,
last name, title, birthdate, private address, business address, picture, phone num-
bers, email addresses, and many more.

Notes

A note is a small text or a graphic, optionally with a title.

To-do

To-do items are things that have to be done once. To-do items can be marked as
complete once their done. Some To-do items might have a due date.

One feature that I have not seen implemented in any PIM application is an automat-
ically apprearing to-do item prior to schduled events. For example: I would like the
to-do item “buy present” to appear no earlier than two weeks before a birthday. Or
I would like the item “buy train ticket for next month” to appear no earlier than the
25th of each month.

For resons of simplification, we will pick calendar or address book data when ex-
plaining some things in detail. The same information ususally also applies to notes
and to-do entries.

The Versit format
One of the most important decisions is how the PIM data is encoded whithin a data
file or database. The format must be extensible and support a rich set of features, but

11

Chapter 4. Protocols and data formats

must still be easy to handle.

We take a suggestion from the SyncML specification: Any SyncML server that sup-
ports a contact database must support the vCard 2.1 (seevCard21) and the vCard 3.0
(seeRFC 2425andRFC 2426) format.

The “v” in vCard stands for the versit consortium. This consortium has also published
other standards, such as vCalender and vTodo. Although the versit consortium itself
does not exist anymore, those standards are still the mostly used and most widely
accepted. Many open source applications use vCard internally as data format and
many E-mail programs have the capability to attach business cards in vCard format.

vCard structure

The vCard format is uses the standard 7-bit ASCII character set for its contents. A
vCard is a line oriented text file. Each line consists of a property, a colon, and a
value. Multiple vCards may exist in one file: the two special linesBEGIN:VCARD

andEND:VCARDdefine the begin and end of a vCard entry. The vCard format itself
is very easy human readable, so let us just take a look atExample 4-1:

Example 4-1. Minimal version of my personal vCard

BEGIN:VCARD
VERSION:2.1
N:Berger;Max
EMAIL;INTERNET:max.berger@xslt.de
END:VCARD

8-bit encoding

When it comes to 8-bit enconding, the Versit format shows its origin in the US: 8-bit
encoding itself is simple, character set selection is not. For encoding of 8-Bit data
the vCard standard defines encode parameters for “quoted-printable” and “base64”.
This allows vCards to contain other data such as photographs (PHOTO), company
logos (LOGO), public cryptographic keys (KEY;PGP) and others.

The character set selection has to happen on a higher level, outside the actual vCard
data stream. This makes 8-bit charachters such as German umlauts dependent on the
processing system. vCard 2.1 defined a way to specify the character set of single
entries, but this is dropped in the newer 3.0 version.

12

Chapter 4. Protocols and data formats

Selected vCard properties

The vCard specification defines many properties. Most of them are self explanatory
and not really relevant for the sync process. Some fields have special functions and
need to be explained:

VERSION

Defines the vCard version. Can be either 2.1 or 3.0. Depending on the version
the processing has to be a little different. This is explained in the changes sec-
tion.

FN

This field contains the formatted name for a person. Although it is not handled
specially in any way, this is the field we want to use when referring to a card in
display outputs, like a debug log.

N

The N property contains the name parts for a person, separated by semicolons.
They are: family name, given name, additional names, name prefix and name
suffix. For comparison, theses five fields are considered like five separate prop-
erties.

UID

The Unique Identifier for this card. Although it is supposed to be unique, it
might differ from client to client. So we have to know about it to change for
every client.

REV

The REV property contains the revision on an element or, more commonly
speaking, the last changed date. This is used for dynamically building trans-
action logs.

For a complete list of fields seevCard21andRFC 2426.

Changes in vCard 3.0

Although it lacks some very nice additions, the vCard 2.1 format is still the most
widely used standard. The newer 3.0 version, however, has some new features:

In vCard 2.1 parameters are just added to the properties with a semicolon. In vCard
3.0 those parameters are described with the type keyword.

The vCard 3.0 format offers some new fields and new types. Those have to be re-
moved when syncing with 2.1 clients.

13

Chapter 4. Protocols and data formats

And last, but not least, the vCard 3.0 standard defines quoting of 8-bit characters a
little different than 2.1 did. It no longer supports the “quoted-printable” format.

Here is my vCard fromExample 4-1again, this time in 3.0 format:

Example 4-2. Minimal version of my personal vCard, version 3.0

BEGIN:VCARD VERSION:3.0
N:Berger;Max
FN:Max Berger
EMAIL;TYPE=INTERNET:max.berger@xslt.de
END:VCARD

Summary

The versit format is a widely accepted standard. Most clients use it and there is no
reason not to do so in this project. It is extensible enough to support many features,
yet it is simple enough to be easily debuggable.

iCalender and iTIP
The iCalender protocol is specified inRFC 2445. It is basically the next version of
the vCalender format. The iCalender format follows the general rules for the Versit
format. It specifies event, to-do, journal, free/busy, and time zone data. Events and
to-do items may also have alarm data.

VEVENT

An event is anything that starts at a certain time and has a specific duration.
This includes things such as meetings, lectures, seminars, birthday parties, your
favorite TV show and so on.

VTODO

A to-do item is something that has to be done, optional with a due date. For
example: Sign up for tests, buy birthday present, clean up room.

VJOURNAL

A journal entry stores text or other data for a specified date and time, usually in
the past

14

Chapter 4. Protocols and data formats

VFREEBUSY

Free and Busy time schedules are needed for coordinating meetings with differ-
ent people. This information is usually made available to others.

VTIMEZONE

Instead of using the system time zone data iCalender defines its own format to
specify timezones.

iCalender is just a way of storing the data. Synchronizing it is specified inRFC
2446. This protocol is callediTIP (iCalendar Transport-Independent Interoperability
Protocol). So iTIP is what is actually interesting.

Unfortunately, iTIP does not provide the requested features. iTIP is a protocol for
synchronizing events, such as meetings between different people, each with their
own address books, but not different address book for one person.

It provides mostly features for scheduling events. A person can publish her free and
busy time to a group or publically. Anyone can request a meeting, and iTIP offers
support for accepting, declining or making a counter proposal.

Last, but not least, the iCalendar Message-Based Interoperability Protocol (iMIP,
specified inRFC 2447) defines how iTIP messages can be embedded into E-mails for
automatic processing by combined mail and scheduling programs such as Outlook
and Evolution.

The iCalendar / iTIP / iMIP solution provides good management for personal and
corporate scheduling. It it fully implemented in Evolution, and partially in Outlook.
Unfortunately, it does not solve the problem of synchronizing personal schedules
across multiple calendar programs.

Lightweight Directory Access Protocol (LDAP)
The name LDAP is short for Lightweight Directory Access Protocol. Its current ver-
sion is 3. It is specified inRFC 2251, andRFC 2252, with additional information in
RFC 2253, RFC 2254, RFC 2255, andRFC 2256.

There is a free LDAP implementation of a server and client library. It is available at
http://www.openldap.org. It implements the currently used versions 2 and 3 of the
LDAP protocol.

LDAP is a database access protocol optimized for reading. It organizes data in a
tree structure. The tree structure is adopted from the well known DNS schema. This
enables us to find and uniquely identify data.

15

Chapter 4. Protocols and data formats

Figure 4-2. An example LDAP tree

dc=net dc=com dc=de

dc=example

ou=People ou=Servers

uid=babs

server ldap.example.com

Each LDAP server can forward requests to other LDAP servers it knows about. This
makes LDAP very easily distributable around the world. Results or whole trees can
be cached and replicated to allow disconnected operations.

Writing to LDAP is far more difficult. Each LDAP node can only be changed on its
authoritative server. There is no merge protocol. The conflict problem is solved by
avoiding it. Whenever a client tries to write into the LDAP tree on a replicated server,
it gets back a referral request to the authoritative server.

16

Chapter 4. Protocols and data formats

Figure 4-3. Writing to a replicated LDAP node

Slave

Master
Replication

Log

slurpd1. Update Request

2. Referral

3. New Request

4. Response
5.

6.

7.

Client

Each LDAP node implements one ore more schemas. A schema contains a list of
attributes and what they mean. Standards exist for some of the more common used
schemas.

When enumerating nodes, these schemas can be taken into account. If, for example,
we want to enumerate all address book entries, we would look for nodes implement-
ing the “inetOrgPerson” schema.

Data organized in LDAP is not limited to information about people. LDAP is actually
used for administration of large computer clusters. In those, LDAP is used to store
computer dependant configuration such as IP addresses, network MAC addresses,
and user login information.

Microsoft‘s “Active Directory” is basically just the addition of LDAP to their file
sharing protocol. This enables Microsoft to include all these nice distribution fea-
tures.

LDAP is a very good protocol for data that can not be changed by the end user,
like public address books. It provides other nice features such as support for account
management. It is a very good source of additional data. But it is not suited for
individual, personal information.

SyncML
Since there is no other protocol that specifically addresses the problem of having
multiple personal information managers, the SyncML initiative was founded. It is
not surprising that the two vendors of the solutions mentioned before, Palm and
Starfish are both founding members of this initiative.

17

Chapter 4. Protocols and data formats

The purpose of this initiative was to create a standard that addresses the synchroniza-
tion of personal information for one person on multiple devices. The main idea here
was the problem of a cell phone and its address books: A phone usually has very
small keys and people would much rather like to use a full sized keyboard to type in
phone numbers, but want to have them available on the mobile device.

Unlike many other standards, the SyncML protocol by itself is not a complete so-
lution. It needs a transport protocol and a data protocol. The SyncML specification
defines encapsulation over HTTP, E-mail, and OBEX, but others are also possible. It
even supports different data protocols to be synchronized, such as vCard, vCalender,
and iCalender.

On the first impression this may look like a shortcoming - but it is not. It makes the
SyncML protocol very extensible. SyncML can be used to synchronize almost every
data format.

The SyncML protocol itself is specified as an XML and WBXML application. The
XML representation ensures that the protocol is human readable. It also takes care
of all 8-bit encoding issues, since these are already specified by the XML specifica-
tion. The WBXML representation make the protocol small for wireless links, and is
thought for mobile devices.

A typical SyncML session consists of 6 data packages that are exchanged between
the server and client.Figure 4-4shows an overview:

18

Chapter 4. Protocols and data formats

Figure 4-4. SyncML session time line

Usually a SyncML session is initiated by the client. It might, however, be server
initialized. This adds an extra optional first package.

After the transport has established the session, the SyncML protocol takes over, and
does its own handshake. This usually includes an exchange of credentials.

Now both machines have to agree with which type of synchronization to continue.
The client requests a type and the server confirms this or suggests an other type.

One reason for suggesting a different type of sync is possible inconsistency: During
initialization both machines also exchange their last sync anchors. If they differ the
server initiates a slow sync as described inthe Section calledSlow syncin Chapter 6.

Then the client sends its modified data to the server. The server processes this data,
merges it with its own, resolves any possible conflicts and sends back its modified
data. The client updates its database accordingly.

The client might have assigned new UIDs to its data. Therefore it sends back a map-
ping table to be stored by the server. At last, the server acknowledges the mappings
and the session is terminated.

The SyncML protocol does not specify how conflicts are resolved. But it does specify

19

Chapter 4. Protocols and data formats

many messages that can be used in conflict resolution. One example is the slow sync,
others are merging, overwriting on client or server, or duplicating. SyncML also
addresses the problem of differing UIDs on different machines.

The promises from the SyncML protocol are many. The cell phone companies are
pushing it, and its targeted as an industry standard. The only thing missing now are
actual working implementations.

20

Chapter 5. Existing SyncML
implementations

The nice thing about egotists is
that they don't talk about other
people.

Lucille S. Harper

When said there are no working implementations, this is not fully true. There are two
library frameworks that implement the SyncML protocol to some extent. Let us take
a look at them:

sync4j
Sync4j is an approach to create a free implementation of the SyncML protocol in
Java. It can be found athttp://sync4j.sourceforge.net. It is still in an alpha / planning
state, so the things mentioned here might already be incorrect or out of date.

Sync4j has a layered architecture. The layers are: core layer, transport layer, frame-
work layer, and application layer

The core layer is responsible for the actual SyncML handling. It takes care of XML
parsing and conversion of the SyncML markup to an internal object representation. It
can also reverse this and convert this internal object representation to SyncML text.
During this process it makes sure the SyncML protocol syntax and semantics are
correct. It also defines a standard set of exceptions.

The transport layer defines standard transport interfaces. Transports can be added by
implementing these interfaces. The standards transports, HTTP, OBEX, and WSP,
will be implemented in the future.

The framework layer contains two frameworks for building SyncML applications:
One for servers and one for clients.

The application layer implements both frameworks. This gives example applications
that use sync4j for the actual synchronization.

Although the sync4j project has not actually published any source, it is still under
active development.

The sync4j concept seems well thought-through. Although it is in a very alpha stage
the development plan is clearly laid out. I hope this toolkit will be available soon for
everyone to develop cross-platform SyncML applications with Java.

21

Chapter 5. Existing SyncML implementations

This might actually happen very soon: On April 8th two students from the University
of Fribourg forked from the original project and try to work on a complete solution
as a diploma thesis and a semester project. I am looking forward to test my software
with theirs!

Unfortunately the Java environment is what keeps me from using sync4j. Java has
been known to be very slow and consume much memory. This is a shortcoming on
thin clients such as PDAs and servers with heavy load.

SyncML Reference Toolkit (RTK)
To establish a standard and to proof that it is actually implementable the creator usu-
ally develops a reference implementation. For ISO standards this is even mandatory.

The same thing happened with the SyncML specification. A reference toolkit (RTK)
was published with a very unrestrictive license on the web site.

After the standard established itself, however the policy for the toolkit changed. First,
the newer toolkit (now called SCTS) was only available to attendees of a so-called
syncfest. Then, they decided to take the toolkit totally off the web site and make it
available with “promoter membership” only. The only problem with that is that this
promoter membership currently costs $20.000 per year. For this reason, the version
described here is the last freely available one.

The RTK is written in pure C. It takes care of the parsing of the XML commands
and the creation of SyncML messages. This is equivalent to the core layer of sync4j.
It also implements basic transports.

Using the RTK requires an in-depth knowledge of the SyncML specifications. Most
commands are simply mapped to C functions.

The RTK would have been a good base for the start of own projects. Its major short-
comings are the use of plain C and the need of deeper knowledge. But since the
current versions are not free anymore, this opportunity ceased to exist.

Hardware devices
During the course of the last two years, several hardware devices were developed
that implement the SyncML specification. A complete list of officially compliant im-
plementations is available at http://www.syncml.org/interop/interop-compliant.html.
Most of the devices are mobile phones. Some companies chose to test each device,
others just tested their protocol stack for conformance. Since I do not have acces to
a hardware devices that supports SyncML I cannot go into more detail.

22

Chapter 5. Existing SyncML implementations

Currently, only the top of the line phones support SyncML. But this situation will
hopefully get better, when the SyncML protocol stack will become a standard part
of any mobile phone.

23

II. Synchronization concepts

Chapter 6. Synchronization basics

Basic research is what I am do-
ing when I don't know what I am
doing.

Wernher von Braun

Before we can start creating synchronization applications, we have to take a look at
certain synchronization concepts first. And even before that we need to find out what
is meant by synchronziation.

What is synchronization?
We define two databases as synchronized whenever their contents are equivalent.
Whenever their contents are not equivalent, the databases are unsynchronized or out
of sync. It is important to note that equivalent does not necessary mean exactly equal.

Having said that, how do we get two databases to be synchronized and how do they
get out of sync?

The easiest way of synchronizing two databases is by replication. With replication
the master database is simply copied over the content of the client database. After
that process, the former client data is lost, but both databases have the same content.

Databases get out of sync, when at least one database operation is applied to one
database and not the other.

Database operations
Ususally database operations fall into one of the three following groups:

Add

A new entry is created.

Modify

An entry is modified. Some data might have changed or some details might have
been added.

Delete

An entry is deleted. It no longer exists in a database.

25

Chapter 6. Synchronization basics

To make it even simpler, the “add” operation is just a special case of the “modify”
operation: It is the modification of a non-existing item.

Soft deletion and hard deletion
There also has to be a special handling of the delete operation. Not every client has
enough space for every database item. Sometimes we want to remove an item from
just one client, but not from the others. This operation is called a soft delete (deletion
on one device) as opposed to a hard delete (deletion on all devices).

One way would be for the client to keep track of the phased out items. But this would
not solve the problem: The client would still have to know about all records it tried
not to know about. Therefore a soft delete has to be handled internally on the server:
The server keeps the record that this entry is invisible to a particular client.

Disconnected operation
If all the databases would stay connected, a database operation could be passed on
to the other databases. The same modification would be done, and the databases
would be synchronized again. Many databases rely on this system. Whenever they
get disconnected, they do not allow write access. Most information found in literature
describes databases that are connected most of the time.

PIM devices on the other hand are disconnected most of the time. We need to find
a way to keep track of the database operations and synchronize them whenever a
connection exists.

Unique identifiers
To keep track of an item and its database operations, the item will have to be identi-
fied first. A scheduling event, for example, could move to a different time and get a
different description. This makes synchronization an almost impossible task.

The solution to this problem is very simple: Have at least one field that never changes.
This field would uniquely identify an entry and is therefore called Unique IDentifier
(UID).

A UID is assigned to an item upon its creation. The UID must not be used again until
this particular item has been deleted from all databases.

Unfortunately, different clients might have assigned the same UID to different entries
or an entry might have been assigned different UIDs by different clients. Thus we
must distinguish between local UIDs (LUID) and global UIDs (GUID).

26

Chapter 6. Synchronization basics

A local UID is valid on one particular client. This client knows only about its own
local UIDs and uses them for synchronization.

A global UID is basically a local UID for a server. The difference here is that the
server tries to assign this own UID to as many clients as possible. Since this is not
always possible, the server has to keep a translation map between its own GUIDs and
the clients LUIDs.

Transaction logs
Now that we know how to identify particular items we can keep track of them with
a transaction log. A transaction log is a history of events that happened since the last
sync. This includes the database operations mentioned before: adding, deleting or
modifying entries. For a good synchronization, a transaction log has to be kept on
every client. The server, on the other side, must keep enough transaction information
to know about all changes that happened since the last connect of any client.

Keeping a full transaction log would require much space. Fortunately, this transaction
log information can easily be recreated if we have the date of the last change for an
entry. We can find the modified entries by comparing their modification date with the
date of the last sync. Now, special care is only needed for addition and deletion.

Adding an item is very easy: Since adding is the same as modification of an non-
existing item, it can be handled like modification.

Deletion is not as easy. However, there are two simple ways to handle deletion: The
first one is to keep empty records, which contain nothing but the UID and the last
changed date. When such a record is synchrinized, it is treated as a deletion notice.
The second way requires keeping extra information: At every sync we keep a list
of items that were synchronized. An item that is missing during the next sync was
deleted.

Both ways do not provide a way to distinguish between soft and hard deletion. This
is no problem for a server, since it needs only hard deletion. For a client, however,
this issue remains unsolved.

Regular sync
Having explained how to identify the items and how to find out what to sync, the
only thing left is to explain how an actual data sync process takes place:

• A client connects to a server.

• The client sends all its changed data to the server for processing.

27

Chapter 6. Synchronization basics

• The server applies the changes and sends back all other changes since the last
sync, with new UIDs for new entries.

• The client applies the changes and sends back a mapping table for those UIDs it
could take accept for some reason.

Slow sync
A regular sync is only possible when both databases where synchronized before and
when both have their transaction logs or are able to recreate them. If this is not
possible they have to initiate a so called “slow sync”.

During a slow sync the client sends its complete database to the server. The server
compares the entries, merges them as necessary and sends back a complete new
database to the client. The comparison itself can either be done automatically or with
user intervention. Since this particular server implementation should not require any
user intervention, some ways for automatic comparison have to be found.

One-way sync
Another special case of synchronization is a one way sync. During a one way sync the
actual sync data is only sent in one direction. This could be used for a public server
that gives out information, like the “Drehscheibe”, which is a university calendar.
Any student could connect to it and download her schedule, but not change anything.

Even a sending only client seems possible. Some E-mail programs, for example,
have the capability to automatically add every person you have sent mail to to your
address book. This would be a one way sync requesting the addition of an entry, if
not already present.

28

Chapter 7. Handling conflicts

No doubt there are other
important things in life besides
conflict, but there are not many
other things so inevitably
interesting. The very saints
interest us most when we think
of them as engaged in a conflict
with the Devil.

Robert Lynd, The Blue Lion

In an ideal scenario, any entry would only be changed or deleted on one client and
then immediately synchronized with the server and all other clients. Unfortunately
this is rather rarely the case. In practical use, the time between synchronizations may
be very long. In the mean time, the same item gets changed on different clients, or
even deleted on other clients.

These possible inconsistencies are called conflicts. Usually it is up to the server to
detect these conflicts and provide a resolution. We will now discuss which types of
conflicts can occur and how they could be solved.

Changed on two clients
The easiest conflict is an item that has been changed on two different clients: Both
clients have synchronized at some point in time. Then, the same entry has changed
on both clients. When the first client connects to the server, a regular sync happens.
Then, when the second client connects, the server detects that this entry has changed
on both, the client and the server. It does this by comparing the date of the last sync
with the date of the last change of the item. Now both entries have to be merged as
explained in the next section:

Merging entries
There are different ways to merge two entries. To minimize information loss, the
merging is done on a field-per-field basis. Several things can happen:

• Both fields are identical or both fields are not set. This is trivial.

• A field is set in one version but not the other. The server verison could be kept, or
the client version. Just keeping this field ensures minimal data loss.

29

Chapter 7. Handling conflicts

• A field is set in both the client and server version. There is no way of automatically
detecting which one to keep. The server or the client version could be kept.

The best solution to this problem would be to keep a modify timestamp for each data
field. Unfortunately this would need way to much memory on thin clients. Even on
servers this would greatly increase overhead. So we have to find another way:

It is not so obvious how this situation could be handeld. To decide on which version
to keep we will take a look the this example first: A server has synchronized with
two different clients. All three contain equivalent data records:

Table 7-1. Merge example setup

Data Client A Server Client B
FN Max Berger Max Berger Max Berger

Ermail;Internet max@xslt.de max@xslt.de max@xslt.de

Phone;Work 089 / 289 2xxxx 089 / 289 2xxxx 089 / 289 2xxxx

REV 01/01/02 01/01/02 01/01/02

Now the data gets changed on both clients:

Table 7-2. Modified data

Data Client A Server Client B
FN Max Berger Max Berger Max Berger

Email;Internet m@xslt.de max@xslt.de max@xslt.de

Phone;Work 089 / 289 2xxxx 089 / 289 2xxxx 089 / 289 1yyyy

REV 02/02/02 01/01/02 03/03/02

Then client A synchronizes. The data has not changed on the server. So no conflict
occurs, the server keeps the new data from client A:

Table 7-3. Client A has synchronized

Data Server Client B
FN Max Berger Max Berger

Email;Internet m@xslt.de max@xslt.de

Phone;Work 089 / 289 2xxxx 089 / 289 1yyyy

REV 02/02/02 03/03/02

When client B synchronizes, a conflict occurs and the data has to be merged. It is up
to the server to decide which version to keep. For illustration, we will show both:

30

Chapter 7. Handling conflicts

Table 7-4. Data after merge

Data Server keeping
own version

Server keeping
client version

Client B

FN Max Berger Max Berger Max Berger

Email;Internet m@xslt.de max@xslt.de max@xslt.de

Phone;Work 089 / 289 2xxxx 089 / 289 1yyyy 089 / 289 1yyyy

REV 02/02/02 03/03/02 03/03/02

Although some modifications get lost, it seems better to keep the server version.
We do not know how much time has passed between both synchronizations. Other
clients might have synchronized inbetween. Keeping the client version would allow
the client to overwrite data with an old version.

Deletion conflicts
A deletion conflict happens whenever an item is soft deleted that has previously been
hard deleted from the database. In this case the soft delete can be safely ignored.

Detecting existing entries
In case of a slow sync or any addition of a supposedly new item it is necessary to find
out if an identical or similar item already exists in the database. Usually this is what
UIDs are for. But unfortunately, we cannot rely on a UID since an entry most likely
will have two different UIDs when originating from two different clients. Or maybe
the same entry has been entered in two different address books which were not able
to sync until now. So we have to find identical items. But how similar is identical?
Or otherwise, how do we know which items can be safely merged?

Comparison by points

To find identical items we have to compare entries on a per-field basis. First of all,
there are the two trivial cases: All fields identical and no fields identical. In the first
case, one can safely assume that the same entry can be used while in the second case
a new entry can safely be created.

We have to define a numerical “uniqueness” of every field to find out which items are
identical. A phone number, for example, might be a good indicator for uniqueness.
However, if two people share a work phone, this is not enough. But an E-mail address
combined with a phone number? Or maybe first name, last name and phone number?

31

Chapter 7. Handling conflicts

To add to this chaos, items might be more or less unique depending on the user. If you
usually contact only one person in a company, a company name or a work address
might be unique. Therefore, any algorithm must be user configurable.

The solution is to use a point system. Points are added for every identical item and
subtracted for every differing item. An item that exists in one but not the other entry is
ignored. If the points are more than a certain number, the items are taken as identical.
Of course, the point distribution itself is fully user configurable.

Example

Let us consider the following configuration:

Table 7-5. Example Setup

Field Identical Different
First Name +10 -20

Last Name +10 -40

Email;Internet +10 -20

Phone;Home +10 -20

Phone;Work +10 -20

...

Points needed: 25

And the following user Entries:

Table 7-6. Example Data (Client)

1. Entry 2. Entry
First Name Max Test

Last Name Berger User

Email;Internet max.berger@xslt.de

Phone;Work

Phone;Home 089 / 8971xxxx 089 / yyyyyyyy

Table 7-7. Example Data (Server)

1. Entry 2. Entry
First Name Max Another

Last Name Berger User

Email;Internet max.berger@xslt.de

32

Chapter 7. Handling conflicts

1. Entry 2. Entry
Phone;Work 089 / 289 - zzzzz

Phone;Home 089 / yyyyyyyy

When comparing these entries we get numerical results. The following table tries
to visualize this: we draw a matrix, putting the entries originating from the client
database on top and those from the server database on the left side. The table contents
in the middle are the comparison points:

Table 7-8. Comparison Points

Max Berger Test User

Max Berger +10+10+10 = 30> 25 -20-40 = -60< 25

Another User -20-40-20 = 0< 25 -20+10+10 = 0< 25

In this case, both “Max Berger” entries are considered identical while “Test User”
and “Another User” are considered different. Both “Max Berger” items are merged
and now we get the following results in the server:

Table 7-9. Merged Example Data

1. Entry 2. Entry 3. Entry
First Name Max Test Another

Last Name Berger User User

Email;Internet max.berger@xslt.de

Phone;Work 089 / 289 - zzzzz

Phone;Home 089 / 8971xxxx 089 / yyyyyyyy 089 / yyyyyyyy

Special last name handling

One problem with the point system is that every entry in one database has to be
compared with every entry in the other database. In my personal setup with about
100 contact entries this multiplies to 10,000 comparisons. This is far to much.

The solution: Find some kind of preselection. A field that, if present, usually does
not differ on different clients. And it should be a field that is present in almost any
entry. Possible fields are:

First Name

Unfortunately a first name has often different spellings. Most people use nick-
names instead of the real first name, and might not do so on all clients.

33

Chapter 7. Handling conflicts

Birth date

A birth date never changes. Unfortunately, birth dates are usually not the thing
people put on their business cards.

Last Name

There are only two ways a last name changes: either by marriage or when it is
simply misspelled. It last name could also differ if it is not set.

So the decision is on the “Last Name” field: Entries are only considered for compar-
ison if the last name equals. This lets us optimize the database for last name compar-
ison. In my personal setup this reduces the comparison of entries to one or two in the
most cases, and once up to six. This reduces the number of full comparisons needed
to about 150

34

III. Realization

Chapter 8. Raw design

Make everything as simple as
possible, but not simpler.

Albert Einstein

Now that we know how to handle all the details, the only thing left is how all the
pieces fit together.

Requirements
To understand which decisions are being made during the design, we have to take a
look at the following discussion points and their rationales:

Use the SyncML protocol

Based on the discussion inChapter 4we chose the SyncML protocol for han-
dling the actual synchronization process.

Put all functionality in a common library

It must be very easy to adopt any existing client or server to the new proto-
col. Therefore, all protocol specific functions must be hidden under a layer of
common functions.

Extensibility

Internet standards evolve quickly. The programs must be written with extensi-
bility and many possible future uses in mind.

Speed

The library must be fast. A server could have a lot of requests and should be
able to handle all of them within reasonable time.

Low memory footprint

The core functionality should also be available on low end computers or hand-
helds. Usually they have very little RAM available.

Secure and error proof

This does not only apply to other broken implementations, but also maliciously
sent false packets. The framework must not crash or compromise security, no
matter what it receives.

36

Chapter 8. Raw design

The concept
The project will consist of three parts, which are:

libsyncml

The core library. All protocol related functions are kept here. Also, all connec-
tion related functions are in here.

SySeEn

SySeEn stands for Sync Server Engine. This is the server module. It should be
very small and basically an adaptor for the library to an SQL back-end. It also
handles conflict resolving.

vCardSync

Instead of writing a new client, an existing one is used: Gnomecard. vCardSync
will be the adaptor from Gnomecard to libsyncml.

Figure 8-1. Concept overview

gnomecard vCardSync

libsyncml

SySeEn

libsyncml
Data

The last major decision is the choice of a programming language. For extensibility
and reusability an object oriented approach seems reasonable. Counting only the
currently most widespread languages this leaves a choice between C++, Java and
Python. Java and Python are more portable, but when it comes to speed they fall far
behind. Also, Java is known to be a huge memory hog. So the decision was for C++.

37

Chapter 9. Libsyncml

There are two ways of
constructing a software design;
one way is to make it so simple
that there are obviously no
deficiencies, and the other way
is to make it so complicated
that there are no obvious
deficiencies. The first method is
far more difficult.

C. A. R. Hoare

When designing the core library, several different aspects had to be taken care of.
This chapter describes which problem occurred and how the design decisions are
made.

Design issues

Event parsing or tree parsing?

There are two common methods of parsing incoming XML messages.

One is to parse the document word by word and take all XML tags as events. An
event handler is called for every item: tag open, tag close and text. This is a fairly
easy approach with a low memory footprint. However, it has some drawbacks: There
is no guarantee that the parsed document is actually valid in the XML sense. Nodes
could be opened and never closed.

The other approach is to parse the whole document, building up a tree in memory and
then passing it to the program. This approach makes handling the contents very easy:
We can freely move along the data. And the tree in memory is always valid. However,
this method has other drawbacks: The first one is memory usage: A whole packet
has to be kept in memory. This is acceptable for desktop computers and servers,
but removes the possibility to use the software on thin hand-held devices. The other
problem is that some events should be handled as soon as they are received.

So, what is the solution? It is a combined approach: Take advantage of both and
leave out the disadvantages. We take a standard XML parser and use it to receive the
XML events. With this information a tree is build in memory. As soon as an event is
received completely it is handled if possible. After that the used information in the
tree is freed.

38

Chapter 9. Libsyncml

Multiple sessions, single databases?

Figure 9-1. Overview of SMLSingle/MultiThread, SMLSession,
SMLSessionHandler and SMLDatabase

SMLSingleThread

SMLMultiThread

or

SMLSession

 1

*

SMLSessionHandler SMLDatabase Real Data
*

 1

1

A single sync session with a single database would be no problem. Unfortunately,
there might be multiple sync sessions going on at the same time or multiple databases
on one server.Figure 9-1shows how this is represented in the class model.

User visible
The following classes and definitions are visible for the user of the library:

SMLType

Data nodes within the SyncML package tree can be attributed with the meta infor-
mationType andFormat . Type specifies the media type of the content. It uses the
standard MIME content-types. The default format istext/plain . TheFormat field
specifies the encoding format for this data field. The most important encoding for-
mats arechr andb64 . chr is the default format and means clear-text or specified
someplace else.b64 is for Base64 encoding, which is used for binary data.

The SMLType class handles these values and their default values. It is responsible
for inserting the meta information into packages where needed and leave them out
where the default values are set.

SMLURI

Another thing that has to be handled correctly are URIs within the SyncML package
tree. Some URIs might be absolute, and some relative. It is the purpose of this class
to give a unique representation, so URIs can be comparable.

39

Chapter 9. Libsyncml

Another purpose of this class is to handle theLocName property of SyncML URIs.
This property is not used during the sync process itself, but may be used to describe
URIs for the user in program outputs.

SMLDevInf

The SyncML specification defines a way to exchange device information. Device in-
formation contains things such as the type and vendor of a device, serial numbers,
firmware versions, etc. It also contains vital information such as the maximum mes-
sage size and the space left in the device.

This device information is, of course, exchanged in an XML representation. To hide
all this from the user, aSMLDevInf object is used. TheSMLDevInf object contains
all device information for one device and provides access functions for it.

SMLSessionHandler

The SMLSessionHandler is the main class that the users of this library have to
derive from. It contains a lot of callbacks vital for session handling, such as get /
receive device information, or find out who we talk to. A SyncML program might
have multiple sessions (usually servers) or just one session (usually clients).

SyncMLDatabase

The SMLDatabase is the adaptor for the real databases. ASMLDatabase object
is needed for each real database. TheSMLDatabase object has to tell the session
handler which database entries have changed. It also receives the change information
of the remote device.

It is important to note, that different session handlers might have access to the same
SMLDatabase object. It is therefore mandatory to take care of locking issues in a
multitasking environment.

SyncMLSingleThread

The SyncMLSingleThread class is responsible for connecting incoming and out-
going connections with a session handler. It can only handle one session at a time.
This ensures that the user has not to deal with multi-threading issues.

40

Chapter 9. Libsyncml

SyncMLMultiThread

TheSyncMLMultiThread also connects incoming requests to a session handler. As
the name suggests, it is capable of handling multiple requests at the same time.

Internal

SMLTreeNode

XML defines a standard way to describe tree like structures. To keep them in memory
a standard approach is used: each tree node is an object, with a reference to its parent
and a list of children.

Figure 9-2. A tree node object

SMLTreeNode parent

SMLTokenType

myType

All SyncML packages are internally represented in this tree notation. A tree is rep-
resented by a pointer to its head node.

SMLNamespaceContainer

To mix XML documents from different sources, the XML specification defines
namespaces. The SyncML protocol itself uses three different namespaces: One for
the protocol itself, one for device information, and one for meta information. But
these are not the only namespaces that can occur in a package: If the data itself is
represented in XML, then it might also have its own tags and namespaces.

Internally, however, a tree node type is not represented by the actual string and its
namespace. This would be way to expensive for comparison. Therefore internally a
numeric representation is used.

TheSMLNamespaceContainer takes care of all this. It maps the numerical repre-
sentation to its string representation and vice versa. It has all SyncML namespaces
built in and extends itself for foreign tags and namespaces.

41

Chapter 9. Libsyncml

SMLFlattener

Keeping the tree in memory is nice, but sometimes it has to be sent out to an-
other device or maybe saved to disc. TheSMLFlattener is responsible for creating
an XML representation of the SyncML package tree. This class can be extended:
TheSMLNiceFlattener for example takes care of formatting the output with line
breaks and indention.

SMLResponsePacket

Before a response package can be sent out, it has to be built first. The
SMLResponsePacket class handles the creation of the response packets. It starts
out with a reasonable default that can be changed. It also makes sure that the
resulting packet conforms with the specification. It even handles such things as the
actual sending.

SyncMLParserCallback

This is an interface class for callback fromSyncMLParser . It is used so that the
actual XML parser can be exchanged, and no other code would have to be changed
in the library.

SyncMLParser

TheSyncMLParser class is an adapter for an XML parser. It currently uses Libxml
from the gnome project. But it is planned to also support Xerces (from the Apache
project) in the future.

SMLSession

TheSMLSession class does the actual session handling. It knows about the incom-
ing and outgoing connection. It receives the SyncML commands and calls the appro-
priate functions from the session handler or the database adapter. It is also responsible
for error handling.

42

Chapter 10. Sync Server Engine

Computers are useless. They can
only give you answers.

Pablo Picasso

The server sleeps on one machine and listens for TCP connections on a specified port.
Whenever a client connects, it auto detects whether it is raw TCP, HTTP, or HTTPS
encapsulated.Then it starts a new SyncML session with the connected client.

Whenever synchronization conflicts occur, the server uses the methods described in
Chapter 7to resolve them

Configuration
The server needs some kind of configuration file. It needs to know which port to listen
to and how to connect to its database. Instead of looking for a config file library or
even writing a new one, a much simple solution is used: The configuration file itself
is specified in XML. Libsyncml has to be linked with an XML parser anyway, so
using the same parser for config files adds no extra dependency.

Back-end database
Instead of writing our own database, an existing database is used. There are many
public available databases: Libdb, Mysql, and Postgresql are the most common. Un-
fortunately, each database has its own access library. To solve this issue, several peo-
ple have written global database access libraries. When looking for a meta library,
the things it should have are:

• It should be easy to prgram.

• It should not require many other libraries.

• It should support as many databases as possible.

One of these meta libraries is iODBC (http://www.iodbc.org/). It also has a nice C++

wrapper called Sqlxx (http://www.ailis.de/~k/projects/sqlxx/). There is no particular
reason in chosing excactly these libraries, excapt that they fulfill the requirements
mentioned above.

43

Chapter 10. Sync Server Engine

Database model
Now that we know where to store the data, we also have to look into how we store
the data. The database model show inFigure 10-1seems reasonable:

Figure 10-1. SySeEns database model

Entries
+GUID: varchar(8)
+TID: integer
+LastName: varchar(255)
+Data: blob
+LastMod: timestamp
+UID: integer
+GID: integer
+Permissions: bitfield(6)

Users
+UID: int
+Name: varchar(255)
+Password: varchar(255)
+Group: int

Map
+DID: integer
+LUID: varchar(8)
+GUID: varchar(8)

Datastores
+DID: integer
+URI: varchar(255)
+LastSync: timestamp
+Client: integer

Types
+TID: integer
+Type: varchar(255)
+Version: varchar(8)

Groups
+GID: integer
+Name: varchar(255)

GroupMap
+UID: integer
+GID: integer

Clients
+CID: integer
+URI: varchar(255)
+DevInf: blob

Users

This table holds the basic user information. The UID is only used internally for
reference from the other tables. The name and password are used for authentication
via the SyncML layer. The password is stored in clear text. The Group property holds
the group that newly created entries will belong to.

Groups

This provides a mapping between the group id (GID) and a name for that group.

GroupMap

There are two ways a user can belong to a group. One is having the group entry in
the Users table. The other way is an entry in this table

44

Chapter 10. Sync Server Engine

Map

This table maps the client (local) UIDs (LUID) to the server (global) UIDs (GUID)
for every client. This table will be quite large, since one entry has to exist for every
possible mapping. If an item is soft-deleted on a client then the LUID field will be
empty.

Client

The Client table contains information about every client syncing with this server. The
numeric client ID is used internally. The LastSync is used to find out which objects
have changed. Also the clients device information is cached in here.

Types

The type table maps an internally used TID to a MIME type and its version.

Entries

This table holds the actual data. The GUID is what would have been the UID within
the data field. TID holds a reference into the types table. LastName is used for
speedup as explained inthe Section calledSpecial last name handlingin Chapter
7. LastMod is used to find out if this object has been changed since the last sync.
UID, GID and Permissions are used for access control. Finally, Data holds the actual
data in the specified format.

Security
There are three different security aspects that have to be considered on a server:
transport security, access security, and storage security.

For transport security we delegate the issue to the underlying transport protocol. One
example is to use HTTPS instead of HTTP. The server is configurable to accept one
or the other from different IP addresses. So I could use the unsecured transport in
a secure environment, like a private network and allow Internet based access via a
secured transport only.

For access security we use a model close to the standard Unix file security model.
Each entry has read and write bits for owner, group and other. A user can specify
which entries are public, somehow public and private. The default flags can be spec-
ified in the configuration file.

45

Chapter 10. Sync Server Engine

The storage security is delegated to the underlaying database and the underlying file
system. This usually means that the database administrator and the system admini-
trator are able to read all data. But this is a common practice, and there are usually
much more valuable files on a system than personal schedules.

46

Chapter 11. vCardSync

The reasonable man adapts
himself to the world; the
unreasonable man persists in
trying to adapt the world to
himself. Therefore, all progress
depends on the unreasonable
man.

George Bernard Shaw

Now we could create another new graphical client, with all the functionality one
could possiblly want. But this would be far beyond the scope of this work. Instead
the well known Gomecard is used as an application. It supportss all mayor features
needed in an addressbook. Its data is stored in a single addressbook file. This file is
in vCard 2.1 format. Gnomecard uses Libversit for accessing this data file.

Libversit
Libversit was once the reference implementation for the Versit data format, as de-
scribed inthe Section calledThe Versit formatin Chapter 4. But the Versit consor-
tium ceased to exist and so did the original source of this library. Different projects,
however, still used this reference implementation in their own programs. Two of
these projects were Evolution and Gnome-pim.

Instead of copying the code from one of these two projects, my idea was to split
Libversit out of both projects and make it its own library again. During this this
process I became the co-maintainer of Libversit and with this a Gnome developer.

Libversit handles reading and writing of Versit data. It takes care about encoding and
decoding of binary data. Since the same library is used in Gnome-pim, it is assured
that the data is fully interchangeable.

Invoking vCardSync
vCardSync is called manually by the user. It might be integrated into future versions
of Gnomecard. It needs two parameters to do its work: The vCard data file and a
server configuration file:

The vCard data file is a plain text file in vCard format. This is the format that Gnome-
card uses to store its data.

47

Chapter 11. vCardSync

The server configuration file must hold certain information: First, it must contain
information on how to connect to the server. Also, necessary authentication data has
to be specified. Then, it must keep which data entries have been synchronized in
the last session with this server. And it must contain the LastSync timestamp. This
is important to recreate the changelog information needed for the sync process as
specified inthe Section calledTransaction logsin Chapter 6.

The sync process
First of all, the changelog data is recreated. The rest is pretty straight forward: Estab-
lish a connection to the server. Authenticate, if necessary. Then find out which entries
have been added, deleted or changed. Send them. Receive the new information from
the server. Back up the old database and then overwrite it with the new data. Send
back UID mapping information and store all necessary information for the next sync.

48

IV. Perspective

Chapter 12. Application and future
uses

Every advantage in the past is
judged in the light of the final is-
sue.

Demosthenes, first Olynthiac

Now that it is possible to synchronize a client with a server, the scenario fromFig-
ure 2-1comes closer to reality. I could place my own server on some machine that
is reachable from all my other machines. This server would hold all my personal
information. It would hold my address book, and most important my schedule.

On my desktop computer at work I would use my very comfortable commercial PIM
program. This program would have a lot of pseudo-intelligence, making my daily
tasks much easier. It would remind me of scheduled meetings ahead of time.

On my desktop computer at home I would use a free PIM program. Although this
program lacks some of the features, it still uses the same database.

Whenever I send an E-mail, no matter whether from home or from work, the recepi-
ents would automatically be added to my address book. I compose a new E-Mail and
my address book would be searched through for possible receipients, thus reducing
the possibility of failure.

But not only desktop computers are part of this. Whenever I meet someone, I would
just take out my Palm Pilot and note down the contact infomation. Then we need to
schedule an appointment. I would always have my complete schedule with me, so
this is no problem.

Phone numbers would automatically be donwloaded into my cell phone. No more
searching through other address books to find a number. No more wondering: I got
called from this number. But who could it be? And no more calling home: “Could
you please look in my address book on the desk and find me the number of xy?”

The synchronization, however, is not limited to one person. A group of people could
share the same server. Whenever they schedule a meeting, this entry will automati-
cally be available on every ones PIM client. Also, new people would automatically
end up in the contact database. This would give simple groupware possibilities at no
extra cost.

Also, the synchronization process is not limited to personal information. Other things
can be synchronized too: A digital camera could use the sync process to download its
images onto the computer. It would only download the new pictures. Those pictures
could be made available to friends and family via the same sync server.

50

Chapter 12. Application and future uses

What I would very much like to see is the usage of E-Mail as a SyncML transport.
This would put up many new demands on both client and server, but it would enable
dial-up lines to even do the synchronization process asynchronousely.

51

V. Appendix

Appendix A. Used software and tools
The final version of this document was edited with Adobe Framemaker using the
DocBook SGML application. It was then processed with GNU Make, GNU Sed, and
Recode to produde a correct DocBook output. This was converted into a printable
format by using Jade, JadeTex and Norman Welsh´ DSSSL StyleSheets for Doc-
Book.

Intermediate versions were edited with Vi, Emacs and Word Perfect. They were pro-
cessed with Xalan or Libxslt using Normal Welsh‘ XSLT StyleSheets for DocBook.
For a final printable format Fop and PassiveTex were tested.

The graphics in this document were drawn using Adobe Illustrator, Microsoft Vi-
sio, XFig, Dia and Adobe Photoshop. They were converted with Imagemagick and
Ghostscript.

The software is written with GNU compiling utilities: GNU Make, GCC and GNU
LD. It uses the libraries Libversit and Libxml from the Gnome project, Libsqlxx
from Klaus Reimer and Libcommonc++ from the GNU project.

53

Appendix B. Acknowledgements
Special Thanks go to

Prof. J. Schlichter

for accepting my work as a Diploma Thesis.

Dr. M. Koch

For supporting me in my work and keeping me on the right threads.

Dr. E. Berger

for proof-reading and stylistic suggestions.

Cand. Phys. B. Liebscher

for proof-reading and layout suggestions.

Norman Welsh

for DocBook, Jade, and his StyleSheets.

54

Glossary
Gnu Public License

GPL

One of the three most common used licenses in free software. Software derived
from or linked with GPL software also has to be licensed under the GPL.

Hyper Text Transport Protocol

HTTP

The stuff that the World Wide Web is made of. A protocol to transport text files
across TCP networks.

iCalender

Next generation of the vCalendar format. Explained inthe Section callediCal-
ender and iTIPin Chapter 4.

Infrared Data Association

IrDA

The Infrared Data Association defined a standard how electronic devices con-
nect and exchange data using infrared signals.

Lightweight Directory Acces Protocol

LDAP

A database access protocol. Explained inthe Section calledLightweight Direc-
tory Access Protocol (LDAP)in Chapter 4.

Gnu Lesser Public License

LGPL

Software derived from LGPL software also has to be licensed under the LGPL.
Unlike the GPL, software linked with LGPL software can be published under

55

any license.

Multipurpose Internet Mail Extension

MIME

A standard to describe the type and encoding of data outside of the actual data.

Object Exchange

OBEX

The Object Exchange protocol is used when a Palm Pilot connects with a PC.

Personal information

The information people used to have in their little black notebook. The most
common personal infomation is schedule, to-do list, notes, and address book.

Personal Information Manager

PIM

Any device or program that handlesPersonal information. Some of the most
common programs are MS Outlook, Gnomecard and Gnomecal, Kab and KOr-
ganizer.

Simple API for XML

SAX

A standard for XML parsers.

Transmission Control Protocol

TCP

The TCP allows two computers to exchange data streams.

56

Unique Identifier

UID

Usually a number or another string that exists only once thus uniquely iden-
tifying an entry. Explained inthe Section calledUnique identifiersin Chapter
6.

vCalender

Versit format for calendar and scheduling information.. Explained inthe Section
calledThe Versit formatin Chapter 4.

vCard

Versit card format for business cards. Explained inthe Section calledThe Versit
format in Chapter 4.

WBXML

A binary representaion of the XML format. Used for small devices and wireless
links.

eXtensible Markup Language

XML

The idea of structured documents is actually as old as document processing
itself. With the internet hype came the XML hype, and that is why many current
standards are described in XML. More on the w3c website.

57

Bibliography

Books and Papers

[Borghoff] Uwe Borghoff and Johann Schlichter, 1995,Rechnergestütze Gruppenar-
beit, 3-540-58119-7, Addison-Wesley.

[Vossen] Gottfried Vossen and Margret Groß-Hardt, 1993,Grundlagen der Transak-
tionsverarbeitung, 3-89319-576-9, Addison-Wesley.

[SynchroXML] Mirko Mrowczynski, October 30, 2001,Synchronisation von Ter-
minplanern mittels XML, Diplomarbeit an der TU Chemnitz.

Specifications

[vCard21] versit Consortium, September 18, 1996, 2.1,vCard: The Electronic Busi-
ness Card.

http://www.imc.org/pdi/

[RFC 2251]Lightweight Directory Access Protocol (v3).

[RFC 2252]Lightweight Directory Access Protocol (v3): Attribute Syntax Defini-
tions.

[RFC 2253]Lightweight Directory Access Protocol (v3): UTF-8 String Representa-
tion of Distinguished Names.

[RFC 2254]The String Representation of LDAP Search Filters.

[RFC 2255]The LDAP URL Format.

[RFC 2256]A Summary of the X.500(96) User Schema for use with LDAPv3.

[RFC 2425] T. Howes, M. Smith, and F. Dawson, September 1998,A MIME Content-
Type for Directory Information.

[RFC 2426] F. Dawson and T. Howes, September 1998,vCard MIME Directory
Profile.

[RFC 2445] Internet Calendaring and Scheduling Core Object Specification: iCal-
endar.

[RFC 2446] iCalendar Transport-Independent Interoperability Protocol (iTIP):
Scheduling Events, BusyTime, To-dos and Journal Entries.

[RFC 2447]iCalendar Message-Based Interoperability Protocol (iMIP).

Online Resources

[http://www.ailis.de/~k/projects/sqlxx/]K's cluttered loft - Projects: Project: sqlxx.

[http://www.gnome.org]GNOME: Computing made easy.

[http://www.gnu.org]GNU's Not Unix!.

[http://www.iodbc.org/]Platform Independent OBDC.

[http://www.openldap.org]OpenLDAP: Community developed LDAP software.

[http://www.palm.com]Palm.com: Products, Services & Company Information.

[http://www.starfish.com]Starfish Software: Smart connected solutions.

[http://sync4j.sourceforge.net]sync4j homepage.

[http://www.syncml.org]SyncML: The new era in data synchronization.

