SILENUS - A FEDERATED SERVICE-ORIENTED
APPROACH TO DISTRIBUTED FILE SYSTEMS
by
MAXIMILIAN BERGER, B.S.

A DISSERTATION
IN COMPUTER SCIENCE

Submitted to the Graduate Faculty
of Texas Tech University in
Partial Fulfillment of
the Requirementsfor
the Degree of

DOCTOR OF PHILOSOPHY
Approved

Michael Sobolweski

Chair per son of the Committee

Noe L opez-Benitez

Michael Shin

Per Anderson

Accepted

John Bordlli

Dean of the Graduate School

December, 2006

Copyright © 2006 Maximlilian Berger

ACKNOWLEDGEMENTS

| would like to thank my Advisor Dr. Michael Sobolweski. This thesis could not
have been done without his permanent effort to keep me on focused on the goal. | would
also like to thank Dr. Noe Lopez-Benitez, Dr. Michael Shin, and Dr. Per Anderson for
serving in my comittee. They could provide me with a different viewpoint.

A very specia thanks goes to Barbara Hartmann for being the greatest person on
earth and for making our relationship work half way around the globe for three years.

| would also like to thank my best friend and roommate Nathan Larson. He was
always there to support, no matter how crazy the idea.

TABLE OF CONTENTS

ADSIFBCE ..ot r e ne s Xi
L. INEFOTUCTION ..ttt e bbb 1
Problem SEEIEMENTooeee e 3
DiSSertation OULIINE ..o 4

2. Background and Literature REVIEWcccooeeieiieiiniere e 5
Existing model for remote file SIOrageooeeeieiiiirineeeeeeee e 5
Model TUNCHONEIITY ..o e 6
AdAItIoNal TEIMS ... 6
Shortcomings of the traditional model ... 7

Existing network file storage SOIULIONS ccoieiiniienineeeee s 8
Non-replicated remote file SyStemMS ... 8
Replicated file SYSIEMSc.ooiiieee e 10

Data grid SOIULIONScccoiiieiieeieceeee e e 11

Other existing file storage SOIULIONSccoverierirenereeeeee e 12

File System COore fEatUIES ... e 12
Architectural qualities for distributed SyStemScccooeririenieieieesee s 13
TrANSPAIENCIES ..ottt sttt b et n e e b e b s eneas 13
CoNfIAENTIAIITY .o 14

Global avail@bilitycccoeiiiiirie e 17
Disconnected OPEralionccocorerereririeeieeee e 20
ManNagEabI ityccooiieeeee e 21
SCAlBDIITY e 22
REHTEDITILY .o 22
MOTITIADIHTTY oo 23

Platform independence ... 23

SEIVICE OFENEALION ..ottt r e b eas 24
Eight fallacies of distributed COMPULINGccooiriririeeeee e 24
Generations of Remote Procedure Callsccooviiirieeiiienesese e 25

Service Oriented ArChitECIUIEooeiieiieiiee e 26

Jini Network TeChNOIOQYcoeeieieierieriese s 29

Peer-to-peer NEWOrKINGooooiiieiiee s 30

SORCER .. 31
Eight truth of networked COMPULINGcooieiirininieeeeeee e 32
Security in existing file storage SolUtIONSccooeiiiirineneeeeere e 32
PrVIIEOES ... 33
Authentication MEChANISMS.cciiiiiiieeie e 44
Privacy MeChaniSMSccooiiiiiie s 45

3. ReQUITEMENT ANAIYSIS .o 46
File SIOrage SCENAINOSoceiiiiieieieriesierie e 46
SMAEll WOIK GIOUP ...t 46
High-Performance Computing Labc.cooeeieieieiineceeeeeeeeee e 47
Large NEEWOIK ... 47
HOME USEY ..o 48
ConCUrrent ENQINEEIS ..ot 48
Student COMPULEr LaDoooiiiieeeeee e 48
ASITONOMY .o 48
High-energy PhYSICS ..o 49
HOst types 0N the NEIWOIKooiieee s 49
SEIVEN e 49
AIWAYS UP CHIBNE .o 49
WOrK time UP CHENE ..o 49

1= (0 o PO TOTN 50
MODITE CHIENE ..o 50
USE CBSE ROIES ... 50
File SYSIEM USEIS ..o s 51
AMINISITEIONS ...t 51
OPLIMIZEN SEIVICESeiiiieieeiiieieee ettt e sre b 52
SEIVICE PrOVISIONENS ..ooviiieiiiiieieie sttt sttt se bt nesn e snesnenre s 52
INtergrid SErVICe ProVIAEIScoccooiiirieieieieeee e 53

USE CBSE DBSION ..ttt et 53
4. ArchiteCture and DESIGNcoeeieeiieiierierie ettt sr e 65
A model for a grid based environNMEeNtccccceiiierireneneeeee e 66

SILENUS architectural modeloooooieeieeeeeeeeeeeeee e 67

COMPONENTS ...ttt r b e n e e sneenas 70
SErVICE USEN INTEITACE ... 70
WEDDAYV @ADIEN ..o 71
NFS G0BPLEN ... 72
FIlE SHOME . e 73
MELAOEEA STOME ...ttt 76
BYLE SLOME ... 77
OPLIMIZEN ..ttt se b nneeneas 78

COoMPONENT USE CBSEScouviieeiiiiesiieie et 78
Browse fil€S USE CASEoiiiiiiiiees e 80
Push upload fil@ USE CBSEcoiiiiiiiieeeee s 80
Pull upload file USE CASEcceeieiiecere e 81
Non-caching download file USE Caseccoererireriieiciesese e 82
Caching download file USE CaSeccceieiiriieiiiiereeee e 82
Use cases for Service-oriented Programsccoeeeeeeeeeeieeneessesseseesseseennes 83

File system attribDULESccooiiii e 85
LI 1 0= = 0P 85
Concurrent File UPaLeScccooirerireeieiees s 87
File REPICALION ..ot 87
Operating System heterogeneityoccooeeeiereneneeeee s 88
FaUIt tOIEraNCE ..o s 88
CONSISLENCY ettt ettt b ettt e s b e bbb st se e e e e e e e srenne s 89
EffICIENCY oo 89
[AEMPOLENCY ...ttt 89
Security, Access Control, AUtNeNtiCationccccerereereenenie e 90

MaNaGING CNANGEc.eiieiiieieeieeie ettt resne b e ene e 90
Change in file metadatacocooiiiiiiiee e 90
Change in file CONENTocuiiie e 91

Metadata Store SynChronizationcocceceeeeienereneseeeeeeee e 92
CONSISLENCY ettt ettt sttt e e b e bbb be e e e e s e nnesnenre s 92
CONSISLENCY FEQUITEIMENESevieiieieeieeiesie et see st e 93

MeEASUre Of CONSISTENCY ccververriiiiriisiieie et 9

Order Of BVENES ... 95
Dual-Clock Time VECIOISc.ooeiiirierieeeeeesiesee e s 99
Properties of Dual-Clock Time VECIOrSccvverererieieiesesee e 101
Performance of Dual-Clock Time VECIOrSccocevierieenenieneneneseeeeeenes 104
ConfliCt @VOIANCE ..o s 105
Conflict resolution through virtual duplicationcccocveiinnininieens 106

The switchback problem ... 107
SECUNEY oottt b e e bbbt e s b et b nre e 109
PrOPOSITION ..o 110
Trusted third party Model ..o 110
Decoupling the authentiCation SEIVICEccceceeieeieeienerereseseseeeeeeee 110
PHIVACY oot 113

0] =SSR 113
Model Performance ANBIYSISccooeieiiiiiiseneeiee e 115
BIrOWSE FIIES ..ot 117
UPIOB FIIES ..o 118
DOWNIOA FIIES ... 120

VA Tt 1 Lo o H USSP VPP USSP 123
Conceptual SILENUS Validationcccceoeierenenenineeeeeesene e 123
Class-1eVEl DESIGN ..o 124
Technical ArChiteCIUrEccooiiiiiiiiieeeee e 128
Operational SILENUS Validationccccooereiineninieeeeseese s 129
Deployment DIagraiM ccooeeeririneeeeieriesie et 129
Validation in a Connected SYSIEMccooeiirinireeeeeeeeee e 130
Validation for the Metacomputer ROIE ... 134
Validation for a Disconnected SysStemccocoviviienieieieeeree e 135
Data INTEGIITY ..oveieeieieieeeei e 137
Validation of Architectural QUAItIEScccoveeviiiiriereee e, 138
Actual PerfOrmanCe ... 139

6. CONCIUSION ..ottt b ettt n b na e ebenne s 141
BiblIOGrapNy ... b 144

A RE I BN .t n e e e e nnn 149

Package SOrcer.SiHENUS.COME ... 149
(@2 SR =S U 1o PSR 149
INtErface BYIESIOIEcccooiiiiieieeieeeee s 151
Class ByteStore.ByteSequenceCreatedcoveverirenieeieeieeneneeseseenes 156
INterface COoOrdINALOrc.cceeiieieiieree e 158
INterface FIlESIOrec.oooviiieeeeeee e s 162
Interface FIleSIOreCoNStantsScccooeveenieieneeieee e 171
Class FIIESIOrEEVENT cceeiieieiiesieeee e st 180
Interface INputFileChannEl ACCESSOrccoviieierinieee e 185
Interface MetadataStoreccoceeverieneeres e e 186
Class MetadataStore.M etadataStoreChangelL ogcccoeveererenenenieneene. 193
Class MetadataStore.NodeCreatedcccorirerinenieeieese e 195
ClasS MSUIO ..ottt sne e 197
Interface OutputFileChannNEl ACCESSONccccveiiiirienereeee e 199
Interface REMOtESIIENUSACCESSONcoveierieriirierieeee e 200
Exception ServiceUnavailableEXCEPLoNcccoiiireririeeieecsesesene 202
Interface SOrCerBYtESIOrEcccoiririririeieeesie et 203
INterface SOrCErFIIESIONEooviiieiieece e 207
Interface SorcerMetadataStoreccoverieieienereee e 210
(O =SS I TSRS 216

Constant fIEld VAIUESoouireieeeeeeeee e 219
Package Sorcer.SilenUS.COre™ ... 219

Vi

LIST OF FIGURES

2.1. File service architecture according to COlOUNSccocvveeiieiiinienerereee e 6
2.2. Discovery in Service-Oriented ArchiteCtureccoeverenenieeieneserese e 27
2.3. Execution in Service-Oriented ArchiteCturecccoevieieeieieneneneseseeeeeees 27
2.4. Service oriented Tasks and JODScccooeiirireiinereeese e 28
3.1 SMall WOIK groUD .o 47
3.2. Typical user cases for afile storage SyStemccceeeeeeieeienenenereeees e 51
3.3. Administrator use cases for areplicated file SyStem ..., 51
3.4. Optimizer use cases for areplicated file SyStem ..o 52
3.5. Provisioner user cases for areplicated file Ssystem ..o 52
3.6. Use cases for the intergrid meta COMPULESccooeriririeeieeeere e 53
4.1. Class Moddl vs. Architecture and DESIGNcceverierinirenereeeeee e 65
4.2. Silenus components communicating over the SORCER networkc.cccceeueeee. 66
4.3. Grid model fOr data SIOraQEeeeeereeieierie e 67
4.4. The SILENUS COMPONENESc.eiiiieriiriiniesieeieeeeeesee e sre s se s s sne s 68
4.5. Component diagram for the user interfaceccoveieieieicnc e 70
4.6. Component diagram for the WebDAYV adapterccoviiiiiiinicieieenenecies 71
4.7. The WEDDAYV @0aDLEr ..ot 71
4.8. Component diagram for the SILENUS facadecccooeviriiiiienenenenene e 73
4.9. File upload transactional SEMaNtiCSccccoeieriienineseeeee e 75
4.10. Component diagram for the metadata Storeccocevereeieeienerese e 76
4.11. Component diagram for the byte Store ... 77
4.12. Component diagram for the OPtIMIZEr ... 78
4.13. SILENUS architectural model oVErviewcocoveeiiieieiceceeeeseeeees 79
4.14. Direct connection With @ passive ClHENt ... 79
4.15. Direct connection with an active client ... 80
4.16. BIOWSE FIlES ..ot e 80
4.17. File upload WIth PUSHooeiiiee e 81
4.18. File upload WIth PUIl ... 81
4.19. DOWNIoading @ fIl@ ..o s 82
4.20. Downloading a file With CaChiNgccooiiiiiiie e 82

vii

4.21. Use case for SO Task using file Storeocooveeeieieieneeeeeeeeeee e 83
4.22. Worker service download CaSEccoeririeiieienerese e 83
4.23. Worker service file Upload CaSecoeiiriiinirieeeeee s 84
4.24. Use case for several tasks using SO file Storecccooveevenineneceeeescee 84
4.25. A Metadata ChaNgEcooeiiriieiieeee e 91
4.26. Change Of fil@ CONENEcooiiiiiieeeeeee s 91
4.27. An event diagram using logical ClOCKScocoiiiiriniiicceeeeeees 96
4.28. An equivalent event diagramcocooereierieeierer e 96
4.29. Global VECIOr TIME ..ot 97
4.30. VECLOr timMe PropagatiONccccoererrerierereeeeeessessessesse e sseseeeeseessessesnessessesneens 98
4.31. Vector clock problem ... 99
4.32. Dual-clock time vectors with local and global counterccccoeiinininennns 101
4.33. Virtua duplication eXampPle ..o 107
4.34. The switchback problem ... 108
4.35. A solution for the switchback problem ... 108
4.36. Basic trusted third party model ..o 110
4.37. Authentication with public-key cryptography and trust-storeccccceeeveenee. 111
4.38. Authentication with public-key cryptography and trust-storeccccceeveenee. 112
4.39. Authentication via role Manager SEIVICEcccvererireresieeieeeeeesee e 114
4.40. BrowSE fIlES USE CBSEocviiiiiiiriieiieeeieiee et 117
4.41. Push file Upload USE CBSEccccoiiiiiriiieeieie et 118
4.42. PUll file UPlOa0 USE CASEccevuiriirieeieieiesie ettt 119
4.43. Download Without CaChiNg USE CBSEccevverierieriiniirieseeee et 120
4.44. Download With CaChING USE CBSEcceeiririeieierierie e 120
5.1 SArGeNnt CIrClE ..o 123
5.2. Package overview for the SILENUS SyStemMcccooeviieneeiieiecesc e 124
5.3. SORCER interfaces in Core packageccceoeoererenerenese e 125
5.4. Object-oriented interface to metadata StOrecccvveeveniiesieseee e 126
5.5. Object-oriented interface to Dyte SLOrecoceieieririreneeeeeee s 127
5.6. Object-oriented interface to SILENUS facadeccoceveevviniecieceencee 127
5.7. SILENUS Technical ArChite€CtUIecooiiiriiieiieierese s 128
5.8. Deployment DIGgIaMc.coceeierierierieniesiese et 130

viii

5.9. Using the ServiceUl to browse fil€S ..o 131

5.10. Standard UNIX |s application used for browsingcccccevivnininenecienne, 133
5.11. Standard UNIX cat application used for downloadccccoevverierinniinnnnnnns 133
5.12. Mobile client used for browsing and displaying files from the file store 134

LIST OF TABLES

2.1. File system core features on remote file storage solutionscccccceverenerennnne 13
2.2. NTFS basiC file PEMMISSIONScccoiiiiiiiiiiesieieee et 36
2.3. NTFS basic folder PEMMISSIONSccooieieiierieriesie e 37
2.4. NFS special aCCeSS PEMISSIONS ...cc.eiviruerreieeeeriessesresiessessesseeeeseessessesseseesnessesseenes 38
2.5. NFS specia access permiSSioNS (COML.) ...oeevereerererenresieseseseeee e seesre e sneseeas 39
2.6. File privileges in different file SyStems ... 42
2.7. Directory privileges in different file SyStems ... 43
3.1 Browse FileS USE CaSEooiiiiiiiiiiiieeeeee et 54
3.2, FINA FIES USE CASE ...ttt 55
3.3, UpPload FIlES USE CBSEooeiiiieieie sttt 56
3.4. DOWNIOad FIlES USE CBSEooeiiiiiieriesiesieeee ettt 57
3.5. MOdify File MEtadalaccccoeiriiieieieierese e 58
3.6. RePIICate FIlES USE CBSEoceeiiiiiieierieeiee ettt 59
3.7. Delete File REPIICA USE CaSEcccooiiiiriiiieieeeiesie s 60
3.8. Erase File Permanently USe CaSEccoiririeiierieieresese et 61
3.9. Get SErVICE SAE USE CBSEooeiiieeieieriesierie et 62
3.10. ProviSion SerViCe USE CaSEccccoeriirierierienieeeeeeee st 63
311, SLOP SEIVICE USE CBSE ..ottt sttt nesn e snennenneas 64
4.1. Examples of network typesin Use todaycccceoererenenininieeeeese e 117
4.2. Estimated upload times for pull file upload ... 120
4.3. Estimated download times without CaChiNgccoceeieieeieienineneereeeeeees 121
5.1. SILENUS performance over the NFS adaptercccovirieninieieicnenc e 140

ABSTRACT

File storage in computer systems has to be reliable, fast, and available over the
network. There are several approaches to distributed file systems, which suffer from
common problems: They are either very difficult to set up and maintain (such as AFS) or
have a single-point-of-failure (such as SMB, NFS).

The Federated Service Oriented Computing Environment (SORCER) provides
aframework for dynamic network services. It promises support for providing reliable,
autonomically deployed services.

Thus questions to be answered are:

» Can adynamic distributed system such as SORCER provide the stability and reliability
that is needed to provide afile system for metacomputing applications?

» Would the additional overhead lead to a severe impact in performance?

» Could users without computer science knowledge use such a system?

Xi

CHAPTER 1. INTRODUCTION

Storage of data has always been an issue in computer science. Saving your data
to ahard drive is easy and convenient. Unfortunately, data saved to your hard driveis not
safe. There are several potential problems:

A primary problem of data storage is data theft. Nowadays this has become one
of the most important issues, but unfortunately, it is still overlooked by many devel opers.
On most PCs, a person sitting directly at the computer can access any data. For this
situation it is very unlikely that one or your competitors would walk into your office and
turn on your computer. Nevertheless, think about how many people actually have keys to
your office: your co-worker who may not like you, a housekeeper who is underpaid, and
so on. Even if your datais stored on a server, any system administrator can usually access
any stored data.

The second and most noticeable problem is that of computer failure. Computers
are not, and will never beinfallible. In fact, at any given time only 80% of all hosts on
the network are working. Imagine having an important report on the server and not being
ableto work onit, because it is down. There are different possibilities for failure: planned
maintenance, unplanned outages, network failure or server failure. Most of the times
these failures are temporary, in which case they are just annoying, but sometimes these
failures are permanent. In this case, one can only hope that you have a recent backup.

These are just two examples of the problems with today's file storage systems.
Both of which can be solved using much energy and thought. A server could be put in
a secure room with an alarm system where only one person has access. There could
be multiple network connections, multiple servers, with fail over, adaily backup
system, and so on. Nevertheless, solving these issuesis very involving and requires a
lot of maintenance. Smaller companies or even home users will not take the necessary
precautions to protect their data.

Seeing this, there must be an easier way to manage datafiles. A simpler method
must exist, that enables the average user to take advantage of the networked world,
without buying expensive hardware or hiring an expert. This, however, callsfor a new
paradigm in networked computing.

Paradigms of computer networking have changed over time. When the first
multi-user computers where introduced, they used the server-client paradigm. One
large server would handle al the time-consuming tasks, and multiple, so-called "dumb
terminals’ did nothing but interaction with the user. Should the server fail, no users could
work. The next big trend in the computer industry was the personal computer. Instead of
being dependent on other hosts, now each user had their own personal computer. Failure
in this case would result in this person's data could be lost, but no one else would be
affected. Handling many of theses systems was a difficult task for administrators. They
had to physically sit at the computer and disturb the user for each maintenance task.
Therefore, people began networking their personal computers. They went back to the
client-server paradigm for some items, such as storage space, and used their personal
computers for other items, mostly computation. Thisis the current state in most computer
networks around the world.

Another networking paradigm has emerged in the current decade. It is called
peer-to-peer. In a peer-to-peer architecture, each client application is also a server and
each server application is aclient. These applications are known as servents|[47]. The
main ideais that instead of just consuming resources, like a client, or offering services,
like a server, ahost will do both. Peer-to-peer software is used mostly in file-sharing
networks, such as bit-torrent. Instead of downloading afile from asingle location, a
user can now download afile from every other user that already hasthisfile. This saves
bandwidth and can vastly improve performance. Unfortunately, peer-to-peer networks
have a bad reputation due to most of the content found in these networks if copyrighted
material and should not be shared in the first place. However, peer-to-peer networks are a
very recent technology and an active area of current research.

The fourth and most advanced network paradigm is the one of service-oriented
computing. Peer-to-peer is already an advanced step, but why stop there? In
service-oriented computing, a service provider exists on the network. It could provide
computational power, storage space, or any other resource available on the provider.
Moreover, most important: it's location does not only matter, it may even change. If
a host becomes unavailable. The software for running a service does not need to be
installed on a computer. Any computer joining the network can automatically pick up
services, and provide them to all other computers. This provides a very dynamic and fail

proof network. SORCER, developed by Dr. Sobolewski at the Texas Tech University,
provides a framework to support service oriented computing. There have been several
thesis's researching the distribution of computational power, but so far none concerning
the distribution of storage space.

The questions to be answered are: Can a dynamic approach, such as
service-orientation, provide the reliability and stability required for afile system? And
if so, how can this be done? There are currently no existing file systems that use a pure
service-to-service approach.

To answer these questions, the SILENUS system was designed and built.
SILENUS is adistributed file storage system that is secure, failsafe and easy to use. It
uses a new approach: File storage should be a service where the user does not need to
know where, when, or on which hosts the actual file datais stored. Files are automatically
replicated and migrated. Data is encrypted and available only to authenticated users.

The SILENUS system introduces a new model for file storage. This model
splits up the file system into several independent services. There are gateway services,
to support existing applications. Data storage services store the information in the
system. Management services keep an overall overview over the system and provide
optimization. Each service can exist multiple timesin the network, is independent, and
federates whenever arequest is made.

Problem Statement
To design arevolutionary new distributed file storage solution providing
» Thefile system core features as defined in the section called “File system core
features’.
» Thearchitectural qualities as defined in the section called “ Architectural qualitiesfor
distributed systems”.
* The use cases defined in the section called “Use Case Roles”.
Which is done using a newly formed model, for this application, as described in
Chapter 4, Architecture and Design.

Dissertation Outline

This dissertation is divided into six chapters. Chapter | introduces the problem of
storing data. It then gives an overview over this dissertation.

Chapter 11 describes the background research and literature review necessary
to understand the problems and the proposed solutions in this dissertation. It iswritten
in two parts. The first part describes existing file storage solutions. It examines their
advances and disadvantages, and how they relate to SILENUS. The second part looks
into different qualities for distributed systems.

Chapter 111 describes the detailed objective of the SILENUS solution. The
exact requirements are extracted from the knowledge about existing solutions and their
shortcomings.

Chapter 1V proposes anew model based on the concepts and technologies
investigated in the background research. It describes an overall system architecture
based on the service-oriented paradigm. It then describes the design of the individual
components.

Chapter V describes a prototype based on the newly created model proposed in
Chapter V. It looks at a specific implementation of the proposed solution. It will describe
details and algorithms that were necessary to solve problems that will appear during
the implementation. It describes which test cases where used to validate the proposed
solution. It also describes the operational validation of the prototype. It will show how the
prototype was deployed and tested.

Chapter VI summarizes the dissertation. It provides an overview over the lessons
learned. It compares the new solution with the existing ones. At the end, it will describe
further work and research directions.

The appendix contains the technical reference for the prototype implementation. It
shows the actual usage of the interfaces that where designed for the implementation.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

The literature review and background includes two parts: In the fist part, existing
distributed file storage systems are looked at and analyzed. Their content will provide
asolid base for the current state of the art. In the second part, different techniques and
approaches are investigated. Thisis needed to make a good decision on which approaches
to choose for the actual design.

Existing model for remote file storage

To develop an architectural model for SILENUS it is necessary to look at existing
models for distributed file systems. Coulouris describes a basic model for distributed file
systemsin hisbook [75].

Coulouris describes a basic model for afile service architecture consisting of
three components: a flat-file service, adirectory service, and a client module. In this
model the flat-file service and the directory service export an interface to the client
module. The client module maps the calls from the local operating system to calsto the
file system.

Theflat file service is concerned with operations on the contents of files. Files are
identified by UFIDs, which are unique identifiers for al filesin the file system. When a
flat file serviceis asked to create afile, it creates an UFID.

The directory service provides mapping from textual file namesto their UFID.
Clients can obtain an UFID by asking the directory service for agiven filename. The
directory serviceisresponsible for creating and browsing directories. Directories can
hold references to other files and directories.

The client module runs on the client computer. It makes both the flat file service
and the directory service available to the client computer under one interface. It provides
an adapter for the operating system file functions to calls to the distributed file system.
The client module is responsible for archiving performance through caching.

Client computer Server Computer

Application i i
Directory service
Client module Flat file service

Figure 2.1. File service architecture according to Colouris

Model functionality

In Coulouris model, both the flat file service and the directory service provide
operations for the client module.

The flat file service provides support for the read, write, create, delete,
getAttributes, and setAttributes operations. Read and write are used to read and modify
file content. Create is used to create new files, while delete is used to remove existing
files. Get- and setAttributes are used to read and write file metadata.

The directory service provides the lookup, addName, unName, and getNames
functions. Lookup is used to retrieve the UFID for a given filename. AddName and
unName are used to add and remove files to and from directories. GetNames provides a
way to list file contents.

Additional terms

Coulouris a'so defines two additional terms for distributed file systems:
Hierarchic file system and file grouping. A hierarchic file system provides a
tree-structure for files. File grouping defines a collection of files that should be seen as
one unit.

The directory service aready provides support for a hierarchic file system, since
each directory can contain files and other directories. This allows access to a specific file
by the use of a pathname: A multi-part filename that describes the path through the tree.
The root node has to be represented with a distinguished, well-known name. L ookup can
then be provided for files based on their pathname.

A filegroup isacollection of files on a server. Each server may host different
file groups, and file groups may be migrated from server to server. Therefore, file groups
have to be identified with afile group identifier. A file group identifier must be uniquein
the network.

Shortcomings of the traditional model

The Coulouris model has several shortcomings. The first shortcomingisin the
distribution: Even though three components are identified, two of them have to reside
on the same host. Some of the functionality is duplicated in the client module. Another
shortcoming is the special importance of the file name attribute as opposed to other
attributes. Directories may not have any attributes at all in this model.

Coulouris distinction of three modulesis a step in the right direction, but the
restriction that two of them have to reside on a server host and one of them has to
reside on aclient host seems rather artificial. Splitting up the service architecturein
two modules provides several advantages. One of these advantages is scalability: If two
components provide distinct services and do not rely on each other, they can be run on
different server hosts. The Coulouris model does not use this advantage since it is based
on the classical client-server model.

In Coulouris model, some of the functionality of the server modules hasto be
duplicated in the client module. Coulouris states that the client module has to provide
caching support. Thisrequires keeping alocal directory service and alocal flat file
service. Theselocal services are minimalized version of the ones available on the server,
and are therefore integrated in the client module. If the directory service and flat file
service would be more generalized, they could be re-used in the client module.

The attribute handling in Coulouris model isinconsistent. Coulouris defines a
special filename attribute that is to be used with the lookup service. This disallows the
use of the lookup service for other attributes, such as searching for afile by creation date.
For such a search each file would have to be first identified in the directory service, and
then its attributes retrieved from the flat file service. Directories may not have attributes
at al. They exist only in the directory service, which has no provision for querying
attributes.

Existing network file storage solutions

Before developing a new solution, one hasto look at existing solutions. For once,
they might provide very good hints on what is done and what is still missing, but for
many people these existing solutions might already provide all the features needed.

This section will look at different existing network file storage solutions. Single
computer solutions are skipped, as this dissertation is about distributed data storage.
Different solutions will be looked at in the order of their complexity and the amount of
functionality they provide.

When looking at these file systems three types of file systems have to be
distinguished. The first type provides remote access to files, but these files exist in one
place only. NFS and CIFS are examples of such file systems. The second type provides
file replicas, providing better access and higher availability. AFS and Coda are examples
of replicated file systems. The third type of solutionsis data grid solutions. These provide
full data management, mostly for high-performance computing applications. Globus
GridFTP and the Avaki data grid are example solutions.

Non-replicated remote file systems

Non-replicated remote file systems are network file systems where the actual
data existsin only one place on only one host. This usually means much less overhead,
and simplicity. However, it also means less safety in the case of failures. If the host that
contains the file is unavailable then the file will not be available.

Network File System (NFS)

NFSisthe most widely used network file system in UNIX environment. It was
originally developed by Sun but is now available on ailmost any UNIX or UNIX-like
operating system. It isimplemented as a set of remote procedure calls (RPC). It provides
only host-based authentication and only suggests obeying use permissions. File locking
was not possible until version 3 and still provides problematic between different
operating systems. Newer implementations of NFS provide alittle more security, but
these are less used do to incompatibilities with other operating systems. NFSis not
reliable in the case of network failures: The administrator can chose between "fail" after
acertain timeout or "hang forever". Despite all shortcomings, NFSis avery fast network

file system with very little overhead. It works very efficient in local area networks
(LAN). NFS mounts can be read-only cached for improved performance. Migration of
dataisimpossible: Datais referenced by the server name and the location on the server.
[1.2]

Migration and replication of data has been added to version 4 of the NFS
protocol. Unfortunately, this specification is still new, and so current implementations
are limited. Many existing clients are now just having afully working NFSv. 3
implementation. Even in NFS 4, a server must still be available to tell clients about the
new location of their data. [5]

Common Internet File System (CIFS)

IBM developed CIFS under the name Server Message Block (SMB) protocol.
If was then re-used by Microsoft as their network file system protocol and then later
renamed to Common Internet File System (CIFS). It this system a user connectsto a
specific storage on a specific server. Then she can use the remote disk space like any
local disk space. Locking and authorization are provided. The biggest drawback of CIFS
isthat it provides user-based authentication only. An administrator cannot mount afile
system for al users and give them different permission. Despite other claims, CIFS
isvery secure: Since every user hasto authenticate, there is no need to trust the client
computer. User administration is needed on the server only. CIFSis the most commonly
used file system protocol in the windows world. It even provides browsing for available
shares. CIFSfile systems can be easily migrated to different locations on the same server
host but not across multiple hosts. [14, 13]

Despite of these drawbacks, single replicafile systems are still the most common
used. The main reason for that is their sheer smplicity. Any new remote file storage
will have to compete with that. Even though solutions that are more sophisticated are
available, most UNIX-like systems still use NFS, and most Windows-systems use CIFS.

Replicated file systems

Replicated file systems keep their data on more than one server. There will always
be multiple copies of each file. The advantage is that now only one of the host has to be
available. This helpsto provide availability in the case of hardware and network failures.
Multi-replicafile systems are more sparsely used. They require a substantial amount of
administration.

Andrew File System (AFS)

The Andrew File System was originally developed at the Carnegie Melon
University (CMU). It was then continued by IBM, and eventually made open source.
AFSwas intended as a replacement for NFS on UNIX hosts. However, the AFS software
isavailable for all common operating systems. AFS has awide variety of features: The
user does not need to know where the physical fileis, only the address of an AFS master
server. The master server and all data can be replicated. Replicas are usually read-only,
but can be made the upgraded to the master copy in case of a permanent failure. The
client software usually creates caches the datalocally, giving better performance. AFS
security is handled via Kerberos, which is a common standard for authentication. AFS
datais not encrypted. The number of replicas of afile depends on what store thefileis
in[48]

AFSisavery good distributed file system. Many larger organizations such as
large companies and Universities use it. One major drawback used to be high license
fees, which has disappeared since the software was made available as open source.

The biggest problem with AFSisthe time it takes to set up. Configuration is very
complicated. It iseasier if aKerberos server isaready in place, but it will still take along
time. This makes AFS unusable for the small work group or the home user.

Coda

Codais aso developed at the CMU. It is based on the code of AFS. Coda
provides additional features: read-write replicas and hoarding. Coda even has conflict
resolution: Should the network connection between two servers fail while two clients are
writing on them it will automatically detect conflicts and provide both files. Coda aso
requires OS support, which is only available for alimited number of operating systems.

10

Codais still in an experimental stage, and not recommended for production use. Code
provides some kind of security; unfortunately, some of it has been cut out due to the
encryption export restrictions of the USA.

Coda provides very interesting features: Especially the disconnected operation
and automatic conflict resolution in code is very sophisticated. Unfortunately, the setup
of Coda still requiresalot of manua administration.[15, 16]

Data grid solutions
Data grid solutions try to provide common data for computation intensive,
distributed applications. They usually require specially written applications to function

properly.

Globusfile store

The file storage system in Globus was invented from a different viewpoint. While
the otherstried to supply afile system to al legacy applications, the Globus system
tries to supply efficient file storage to new applications, which are specifically written
for the Globus system. The Globus system is used to for distributed computing. Since
this usually involves large data sets, the focus here was on performance. Files can be
downloaded from multiple sources to prevent server overload.

The Globus file storage system has very good ideas. The main drawback isits
incompatibility with legacy applications and that it never was meant to be afile system
for legacy applications. [17, 18, 19, 49]

Avaki

Sybase Avaki Enterprise Information Integration (Ell) provides a comprehensive
grid data management solution. It stores data at different locations but provides one
common interface to the user application. It combines data from different sources on
different hosts and different locationsin a unified view.

Avaki does not use replicas for redundancy. It provides cached replicas to
support faster access. Administrators may even write to these replicas. The replication
process is optimized for already existing fast and reliable network infrastructure in high
performance computing labs.

11

Avaki originally started out at the University of Virginia under the name Legion.
It was commercialized in 2000. Sybase bought Avaki in 2005. It was then integrated into
their line of data oriented services.

The original Legion software was seen as agrid portal rather than a data
management solution. It provides unification of different data sources and access through
the same interface. The common interface makes Avaki interesting.

A major drawback of the Avaki softwareisits cost. Being commercial software,
theinitial costs are very high. The software requires an existing, reliable infrastructure.
As such, it may be good for larger organizations but is unfit for the end user.

The Avaki software is unable to handle disconnected operations. Accessing data
from its original source means that the original source must be available: the network
must be working, the host must be up and the software must be running. All these
assumptions can only be made in avery controlled environment that hardly exists outside
of lab conditions. [20, 21, 22, 23, 24, 50]

Other existing file storage solutions

The solutions described here are some of the most commonly used distributed file
systems. There are several other file systems that each try to solve a specific question.
The Lustre File system is afile system developed for high-speed, robust file accessin a
cluster computing system [25, 51]. Google has developed a propriatary file system that is
used for their internal data storage. It is geard toward their specific needs of storage and
high-speed access [26]. These are just two examples of other specialized file systems.
These file systems have in common that they are optimized for a specific need and are
not intedend for general use.

File system core features

A set of distributed file system core features can be defined based on the analysis
of the existing file storage solutions. Table 2.1, “File system core features on remote file
storage solutions’ shows these features and gives an overview of the existing remote file
storage solutions:

12

Feature NFS CIFS |AFS Coda |Globus |Avaki |SILENUS
Remoteaccess |Yes Yes Yes Yes Yes Yes Yes
Migratable on the [>=4 Yes Yes Yes Yes Yes Yes
same host

Migratableonto |>=4 No Yes Yes Yes Yes Yes
another host

Replicated No No R/0O R/W |R/O R/IW |R/W
Self optimizing |No No No No Yes Yes Yes
Self managing No No No No Yes Yes Yes
Easy install Yes Yes No No No No Yes
Compatiblewith |Yes Yes Yes Yes No No Yes

existing software

Table 2.1. File system core features on remote file storage solutions

Architectural qualities for distributed systems

When designing a distributed system, several architectural qualities have to
be satisfied. First, these qualities have to be identified. Existing solutions have to be
investigated. Then possible solutions will have to be proposed.

Transparencies

A good distributed system should provide network transparencies. These
transparencies are defined by 1 SO, however most applications do a poor job of providing
all of them. To make SILENUS easy to use, all of these transparencies should be

provided: [12, 71]

* Location transparent: it shouldn't matter where the file is stored
» Access transparent: all elementsin the file store should be accessible from classical,

non-SORCER programs.

* Replication transparent: there should be no difference on what replication the user

works

13

* Failure transparent: the system should still work even if a significant number of hosts
are down.

» Read concurrency transparent: multiple users should be able to read the samefile at the
sametime

» Write concurrency transparent: multiple users should be able to write to samefile at
the sametime

» Migration transparent: the system or the user should be able to migrate the physical
presence of afile without interrupting any work.

Confidentiality

One of the most important features of any distributed file storage solution is
confidentiality. Confidentiality here means that only authorized people are allowed to
view the files stored in the system. In a distributed system, this becomes even more
important since files are stored on multiple systems. Even an administrator on one system
should not necessarily be alowed to view all files stored on a particular device.

The term confidentiality is used in contrast to the usual term privacy. Privacy can
have other meanings, where confidentiality is clearer in describing that only authorized
people are able to view certain content.

Most of the existing file storage solutions check users' credentials. Once auser is
authenticated, she has full accessto all her data. Unfortunately, administrators can very
often bypass the credential checks. Most systems allow administrators to impersonate
any user on their system. While thisis a good solution for single systems, where an
administrator should have full rights, this can be a problem in adistributed system. Users
may very often have administration rights on their personal work computer, but they
should not be able to read data from other users on the same network.

Even if the user does not have administrative access, network ports are very often
unsecured. In many cases, organizations provide network ports for guests, or studentsin
the case of universities. These public ports can very often be used to listen into traffic on
the network. A solution may be not to provide any public ports, but some of them might
be outside of the organization: A user might want to access her data over the Internet, and
thereis no telling who could be listening.

14

Another security hole is direct access to the storage hardware. Even with no
administrative rights, users can very often boot systems from an alternative medium
and acquire administrative access. This can be prevented; however, there is currently no
defense against someone physically taking a hard drive out of a computer. Making the
hardware inaccessible is easily possible in large organizations. The servers would have to
be put in a dedicated room with security cameras. Only highly trusted personnel would
have akey. All the datawill be stored in the server room; no data will be stored on the
users computers. Unfortunately, this solution isimpossible for smaller organizations. It
also makes redundancy almost impossible to acquire.

Encryption solves the problem of confidentiality: Instead of storing datain
so-called plain format, the datais encrypted and then stored. To decrypt the data, a
decryption key is needed. These keys are much smaller than the actual data. Current key
sizes range from about 128 - 4096 bit. Storing a 4096-bit key takes up only 0.5 kilobytes
of space and can safely encrypt several gigabytes of data. Sophisticated methods to
secure encryption keys have been developed. Most common are pin-numbers, pass
phrases and smart cards. [72]

There are two main types of encryption: symmetric and asymmetric encryption.
Both have their advantages and disadvantages.

Symmetric encryption

In symmetric encryption, the encryption and decryption key are the same. The
main disadvantage is that no data can be encrypted without the decryption key present.
Therefore, no one can leave data in the system for other people to read unless that
person has access to the same key. Symmetric encryption therefore requires alot of trust
between involved parties. The main advantage of symmetric encryption isits speed.
Symmetric encryption with short key length can be done very fast. The most widely used
symmetric encryption algorithms are DES, blowfish and AES. DES and AES where
standardized by the U.S. government for use in commercia applications. [7, 8]

15

Asymmetric encryption

In asymmetric encryption, the encryption and decryption keys complement each
other. Data can be encrypted with one key, and decrypted with the other. The main
advantage here is that the encryption key can be made public: It is almost impossible
to calculate the decryption key from the encryption key. Thisis by far more secure
than symmetric encryption: The encryption key can be made public knowledge.
Unfortunately, asymmetric encryption is by far slower than symmetric encryption and
requires longer key length. The most widely used asymmetric algorithm isRSA. [27]

Encrypting decryption keys

Both symmetric and asymmetric encryption can be combined: In current
applications, each individual datafileis encrypted using symmetric encryption with
arandom encryption key. This encryption key is then encrypted using asymmetric
encryption with the users asymmetric key. The encrypted symmetric key is then attached
to the data file. This method combines the speed of symmetric encryption with the
security of asymmetric encryption. It also alowsfiles to be available to agroup: The
symmetric data key is simple encrypted with multiple asymmetric keys.

This combination has the advantage that a different symmetric key can be
generated for every stored item. The encryption keys do not repeat, so asmaller size key
can be used. If the encryption on afile is broken, one that one file will be compromised.
Smaller keys allow for greater speed and flexibility.

The second advantage is that a user can physically carry the secret asymmetric
key. It could be saved on adisk, USB key, smart card, or some other small device. This
allows the data to be encrypted on the users computer. It will not be sent unencrypted
through a public network. It will never be decrypted on the computer responsible for the
actual storage. Thus, administrators and eavesdroppers will not be able to view any data
they are not supposed to.

Existing cryptographic libraries

Instead of relying on a certain implementation, it isimportant to rely on a
cryptographic library that has exchangeable algorithms. Cryptographic algorithms come
and go. What is considered safe today may be considered flawed in the near future.

16

To cope with this, the algorithms themsel ves should be exchangeable. Cryptographic
libraries provide support for multiple algorithms. The most common used library for the
language C is gcrypt. There are several libraries for Java. Fortunately, Sun has developed
astandard for Java cryptographic extensions (JCE). All cryptographic libraries based on
JCE are exchangeable. [52, 9]

Global availability

In today's world, uses switch computers very frequently. A user may have awork
computer and a home computer. However, the data should also be available at colleagues
work computer, afriend's computer, or at a computer in an Internet café halfway around
the world. Nevertheless, not only full computer systems, but also smaller devices such
as cell phones and PDASs are now connecting to the Internet. A user's data should not
only be restricted to the use of desktop computers, but should be available on any device
anywhere.

In most cases, the users will not have the necessary administrative rights to
install file system drivers. In some cases, like the home and work computer, thisis
no problem. However, installing software in an Internet café is usually not possible.
Therefore, any file storage solution must be able to work with existing operating systems
and applications.

Providing support to existing application is an important feature in remote file
storage solutions. After all, it isvery unpractical to store data and not being able to use it
with existing software. Any new file storage solution should provide support for existing
application by offering a support for as many operating systems as possible.

WebDAV

The Web Distributed Authoring and Versioning specification (WebDAV)
provides a new standard for remote file storage. The nameitself isill chosen: WebDAV
has nothing to do with the web, but rather with file storage over the Internet in general.
It does not provide version information as the name suggests, but thisis added by an
extension called DeltaV.

17

So what does WebDAYV specify? WebDAV extends the hypertext transfer
protocol (HTTP) with file management function. The original HTTP specification
provides support for authentication, uploading, and downloading of files. WebDAV
provides additional functions for listing, moving, deleting, and locking files. This
provides basic file management functionality. Two extensions to WebDAYV provide
support for versioning and more sophisticated access control lists (ACL). [3, 4, 6]

The WebDAYV standard provides several option levels. Option level 1 provides
basic functionality for upload, download and managing of files. Option level 2 provides
support for file locking. The DeltaV and ACL extensions provide additional option
levels. Each implementer may choose which option levels to implement in their product.

WebDAYV support is built into most modern operating systems. Windows and
Mac OS X provide native support for WebDAV. Any WebDAV storage can be mounted
and used (almost) like alocal file system. Both GNOME and KDE provide very good
support for data stored in WebDAV . All of these have to be |looked at in detail:

All Windows versions since Windows 98 support WebDAV . Microsoft callsit
"Web Folders'. A WebDAYV folder can be mounted like any other file system by going
to "My Network Places’, selecting "Add Network Place”" and then typing in the address
in the http://server /folder format. The WebDAYV folder then appears like any other
network folder on the system. Unfortunately, files cannot be edited directly on the server;
they have to be copied to alocal directory, edited and then uploaded again. Fortunately,
many software vendors implement WebDAV support directly into their applications.
Among the most notably are the Microsoft Office products and the Adobe Creative Suite.

At the time of thiswriting Mac OS X has the best built-in WebDAV support of all
major operating systems. A WebDAYV folder can be mounted like any folder in the Finder
under Go / Connect to server. Mac OS X has full read-write support. WebDAV folders
can be used like any other local drive.

The only shortcoming of Mac OS X isthat the Mac OSfile systems store afile
in two parts: The actua file, and a so called "resource stream". This resource stream
contains additional information, such as the file icon. On non-HFS (the Mac OS native
file system) file systems, these resource streams are emulated with files that start with
dot-underscore (. _). Ideally, afile system driver should know about that and emulate the
appropriate information.

18

UNIX usersthat use the GNOME desktop are lucky: The standard file browser
in GNOME is Nautilus, which supports WebDAYV folders like any other folder. Simply
type the address of aWebDAYV folder in the address bar, and you can browse the
files. Unfortunately, you cannot open files directly, so you have to do the same as on
Windows: Copy thefileto alocal directory, edit it, and copy it back.

Cadaver isavery ssimple WebDAYV client for all UNIX systems. Itsinterface
is the same as the standard command-line FTP client found on al UNIX systems. This
makes cadaver somehow tedious to use, but makes it highly portable. Use cadaver if you
cannot use any of the other methods.

Davfs2 isthe project of building WebDAV support as afile system into the Linux
kernel. Unfortunately, at the time of this writing this project was still in beta stage. [53]

Web-based accessto file storage

A web application framework provides the infrastructure necessary to run
applications over the Internet. Traditional web servers have support for static web pages
only. Web applications however require interactive content. Some solutions work on
the client. Client-side Java, Java script and Active-X are the most common examples.
These solutions, however, require special support and software installed on the users
computer. Other solutions run the application on the server. They provide a user interface
by providing HTML pages and using HTML forms for interactivity. They may use
client-side software, but do not require it. These solutions provide more security. Users
do not need to run applications on their own host. Examples of such technology are Java
Servlets and Java Server Pages.

Java Servlets and Java Server Pages (JSP) alow the provision of dynamic content
on web pages. Traditional web pages are static and have to be manually updated on the
server side. With server-side technology, such as Servlet and JSP code can be executed
whenever awebsite is requested. This enables dynamic web applications such as web
shops. While static web pages can be protected by authentication, the pages served if
authenticated are always the same. Dynamic web pages can provide different content to
different users. They may also add special request and response codes to the web page.
[61, 62]

19

James Gosling first thought of Servletsin 1995. Later Pavani Diwanji picked up
the concept and created Servlets that would eventually be part of the Java Web Server.
James Davidson wrote the first Servlet specification. Java Server Pages were conceived
by Anselm Baird-Smith, and later specified by Satish Dharmaraj in 1999. [63]

A Java Server Page is a shortcut version to a Servlet. Most Servlet just wanted
to add alittle dynamic content to an aready existing web page instead of creating a
completely new page. A JSPisasmall part of Servlet code that is added in an otherwise
valid HTML page. It is executed and its results are added right there into the page. It is
usually agood compromise between just code (Servlet) and just content (HTML).

The big advantages of Java Servlets and Java Server Pages are the dynamic
nature and the large existing software library. Java Servlets allow dynamic content to be
created. They may go from aslittle asjust one line of code to reprogramming the HTTP
protocol and adding new network commands. There are several solutions for dynamic
web applications. JSP and Servlets, however where not just invented for dynamic web
applications, and can therefore fall back on alarge library of existing software packages.
In addition, since they are Java based they work on almost any web server platform.

Aswith all interpreted programming languages, there is a performance loss. This
may not be so significant on asingle-user system but on aweb page with millions of hits
every day, thisisanissue. Fortunately, the Java interpreter provides extensive run-time
optimization with its Hot-Spot engine. Nevertheless, Java Servlets will always use more
memory and CPU than native applications would.

Disconnected Operation

Ideally, the Internet would be avail able everywhere on the world through a
high-speed connection. Unfortunately, thisis not the case yet. On the other hand, human
expectations are more and more global. Data should be available everywhere whether
connected to the network or not. Increasingly users want to use mobile devices, such as
laptops. A distributed file storage system should have support for accessing files offline.

Even in places where the network is usually available, there are still many
network outages. Wired networks at any organizations fail at some point in time. In this
case, adistributed file system should not loose any data. It should still provide support for
saving and accessing cached files.

20

The first step to provide support for disconnected operation is to except
disconnection. Many existing systems assume that the network is reliable, as stated in
the section called “Eight fallacies of distributed computing”. Instead, the exact opposite
should be expected: Each host works independent, and uses data from other hosts if
available. If not, it should carry on.

Each node will still have to collaborate with other nodes. They need to provide a
synchronization mechanism. This synchronization mechanism should not depend on any
global state, but rather detect the states of the nodes automatically. It should then try its
best to synchronize the data in the two nodes.

Sometimes disconnection is predictable. In this case, adistributed file system
should provide support for hoarding. A user may decide to work on certain files at home.
She plugs her computer in at work, selectsfilesfor offline work. After awhile, these files
are made available on the users computer for offline usage. Whenever the user connects
back to the network, the files are synchronized with the rest of the file system.

Managesability

As soon as a system grows larger, or it has been used for awhile, it becomes more
difficult to manage. In the case of afile system, this means many files, from many users,
on many hosts. Severa problems arise here.

Managing many filesis mostly the task of migrating and replicating them among
multiple hosts. Files should be available on multiple hosts for safety. They should be
available on different hosts to not overload a single host.

A large base of usersis another manageability challenge. Each user should have
access to different filesin the file system, and only to these files. User access rights have
to be managed. One single person cannot do this; there must be a way to delegate access
rightsto local administrators.

Hardware failure and adding hosts is a managing problem. When a host fails,
all the files that where on this host will have to be moved to other hosts. To do so, they
should have been backed up or replicated to another host beforehand. When a new host
becomes available, files have to be moved to this host to utilize this new host.

21

One way to provide better manageability isto use federated services. In a
service-oriented approach, each host provides services. Services are automatically
discovered and used when they are available. These services can easily be moved from
one host to another.

Some of these federated services are autonomic optimizer services. These services
can make the decisions a human administrator would make. They can check the current
available resources and make sure they are used according to the policies set by an
administrator. Since federated services are loosely coupled, different optimizer services
can be added and removed based on the needs of a particular system.

Scalability

Another problem arising from alarger file system useisthat of scalability. A
system should still perform well, no matter how many hosts, files, and usersit serves.

Scalability can be achieved by distributing services across multiple hosts. If a
service isavailable on only one host then this host will eventually be overloaded. By
making it possible to have services available on as many hosts as needed, scalability can
be provided by adding extra hardware.

A paradigm switch has to be made from client-server to federated services.
Classical client-server solutions do not provide good scalability. They depend on asingle
server. As soon as the number of requests increases, so does the load on the server.
Federated services, on the other hand, provide away to |oad-balance the system. Instead
of sending all requests through one server, the same functionality can be provided by
many services. A requester can pick a service with alow load. Should all services be
overloaded, an administrator can add extra hosts.

Reliability

A quality that is particular important for file systemsisreliability. A file saved
into afile system should stay there until deleted. Files should never disappear or get |ost.
Unfortunately, most existing file systems move the responsibility for reliability to the
underlying hardware. Should the hardware fail, the files are | ost.

22

Reliability can be achieved by replication. In the case of a distributed file system,
this means replication among different hosts. Every file that should be stored reliable
needs to be available on at least two hosts at any time. Should one host fail, thereis still
another copy available. There should be another backup copy of that made as soon as
possible to provide reliability again.

Modifiability

Software systems are never stable. They evolve into newer systems. There are two
main reasons a software system needs to evolve: bug fixes and new features.

Every software has bugs. Humans write software, and humans make mistakes.
Even the best computer scientists make mistakes [54]. Therefore, no matter how well
software is written and tested, it will always need to be updated to accompany new bug
fixes.

After awhile, users grow tired of an existing system and demand new features.
Maybe a new device just came out, but the current computer system does not support it.
Maybe different people who have a different focus and want different features now use
the system. In these cases, the system needs to be updated to add new featuresto it.

Dynamic code loading helps to provide modifiability. When an update is available
in classical systems, an administrator has to manually download and install this update.
Thisworks well on asingle host, but is very hard to manage for multiple devices. It is
even worse if there are multiple administrators, but a new version hasto be rolled out
immediately. With dynamic code downloading, the software checks for anew version
and downloads it whenever it starts. Rolling out a new version is as easy as publishing
afileon aserver. All that is needed is for the modified parts of the software to be
reloaded. This may also be triggered from the network. With dynamic code downloading,
system-wide administrators can assure that all nodes have the latest version.

Platform independence

Existing computing devices use awide variety of processors and operating
systems. Supporting each of them with a custom solution is a magjor undertaking. An
easier solution isusing avirtual machine. An application would have to be written for
that virtual machine. Only the virtual machine has to be ported to different platforms.

23

The programs are compiled into byte code. This byte code can be reused on any of these
virtual machines. This makes code mobility possible. The most commonly used virtual
machines are the Java virtual machine and .NET.

An example virtual machine specification is the Java virtual machine (JavaVM).
Originally specified by Sun it is now being developed through a community process.
Byte code that is compiled for a certain version of the Java virtual machine will run on
any JVM that complies with these specifications. Example Java VM implementations are
provided by Sun, IBM, Apple, and several open-source development teams. [10, 55, 56,
57, 58]

Originally intended to run on home appliances, the Java VM isnow available on
all modern desktop and server operating systems. The Java environment provides both
an object-oriented language and a runtime system. The language is similar C++, which
used to be the most widely used programming language. The runtime system provides
the same functionality across all platforms. Javais atrue write once - run everywhere
language. Even modern mobile devices, such as personal digital assistants (PDA) and cell
phones now provide support for the Java platform. In the heterogeneous environment of
the Internet, there is almost no way around a platform independent runtime system like
Java. [59, 60]

Java also provides many built-in libraries. Unlike traditional programming
languages, the Java standard requires awide range of standard features. If agiven
Javaruntime version isinstaled on a particular host, all standard libraries will have be
included.

Service Orientation
Service oriented architectures provide most of the given architectural qualities
for distributed systems. It is therefore necessary to investigate service orientation and
understand how it functions.

Eight fallacies of distributed computing

To understand the motivation behind the service-oriented paradigm the common
fallacies of network computing have to be investigated first. Peter Deutsch defined eight
fallacies of network computing as follows: [66]

24

Essentially everyone, when they first build a distributed
application, makes the following eight assumptions. All proveto be false
in the long run and all cause big trouble and painful learning experiences.
The network isreliable
Latency is zero
Bandwidth isinfinite
The network is secure
Topology doesn't change
There is one administrator
Transport cost is zero
The network is homogeneous

ONoAWNE

In a service-oriented system, none of the assumptions is made. Instead, it is
always assumed that these eight points are false.

Generations of Remote Procedure Calls

Two different levels of network communication exist: protocol based network
communication and procedure based network communication. Procedure based network
communication has evolved in the recent years.

Protocol based network communication concernsitself with direct input and
output communication. Applications read and write raw data, usually through network
sockets. The protocol has to be exactly specified. Thisisavery low level form of
network communication and it is very error prone.

Instead of focusing on the language, it is more desirable to focus on invoking a
method on the remote host. Thisisthe idea of procedure based network communication.
Procedure based network communication introduces a remote procedure call (RPC). This
provides the programmer with a higher level network programming.

There are six generations of RPC specifications. The first generation is that of
Sun RPC and others. It defined a protocol for support remote procedure calls that are
language, architecture, and operating system independent.

The second generation of RPC, of which CORBA is an example, introduced
support for objects. The original RPC specifications where written before the
object-oriented concept was fully developed. Once object-orientation became more
common, anew generation of RPC protocols was needed.

25

These RPC specifications made it possible to call existing code on remote hosts.
The third generation of RPCs, such as Java RMI, introduced behavioral transfer. Instead
of just calling amethod on aremote system, actual behavior in the form of code could be
send to another system for execution.

The next and fourth generation of RPC, introduced by Jini JERI, uses dynamic
proxying. In previous generations, a precompiler would have to be used to generate
network stubs and skeletons that wrapped the network calls for the user. With dynamic
proxying, no preprocessing step is necessary. Any existing object can be exported and
made remotely accessible.

The fifth generation of RPCs is the generation of web-services. Web-services use
an XML-based protocol over HTTP for communication. This alows for servicesto be
deployed using existing web-server installations.

The sixth and most current generation of RPC is the service oriented program,
which is provided by the SORCER framework. Instead of communication with one
specific server, amethod invocation can be executed by any host that runs a matching
service. A single invocation may even span multiple hosts. These hosts will federate
together to provide the requested service.

Service Oriented Architecture

Instead of thinking of a service offered by a particular host, the paradigm shift
should be towards services in the network — the computer is the network. In classical
distributed applications, it is necessary to know exactly on which host a particular service
isexposed. In most distributed file systems, for example, it is necessary to know the
name of the host that stores a particular file. In a service-oriented environment, a service
provider registersitself with a service registry. The service registry facilitates lookup
of services. Once a service isfound, a service requester binds to the service provider
and then can invoke its services. Requesters do not need to know the exact location of a
provider beforehand. Instead, they can find it dynamically. They discover aregistry and
then lookup a service. On the other hand, a provider can discover the registry and publish
its own service, as depicted in Figure 2.2, “ Discovery in Service-Oriented Architecture”
and Figure 2.3, “Execution in Service-Oriented Architecture”.

26

Service =l
Registry

OiscoVe

/s
Service Service = |
Provider Requestor
Figure 2.2. Discovery in Service-Oriented Architecture

Service 3

Registry
Service =] Service 3
Provider | Execute EN Requestor

Figure 2.3. Execution in Service-Oriented Architecture

A serviceisidentified by an interface (type) rather than its implementation,
protocol, or name. If a service provider registers by name, the requesters have to know
the name of the service beforehand. Registering services by interface has the advantage
that the actual implementation can be replaced and upgraded independently from
the requesters. Different implementations may offer different features internaly, but
externally have the same behavior. This independent type-based identification allows
for flexible execution of service-oriented programs in an environment with replicated
services.

27

A service-oriented program is composed of tasks, jobs, and service contexts.
Figure 2.4, “ Service oriented Tasks and Jobs” shows an example of service tasks and
jobs. These concepts are defined differently than in classical grid computing. A service
job isastructured collection of tasks and jobs. A task corresponds to an individual
method to be executed by a service provider. A service context describes the data that
tasks works on. This approach is different from classical grid computing, where ajob
corresponds to the individual method. In UNIX analogy, the individual tasks correspond
to UNIX programs and commands. The context would be the input and output streams.
A job corresponds to a shell script or acomplex command line connecting the tasks
together. Service-oriented programs can be created interactively and allow for afederated
service environment. [32]

<<interface>>
Exertion

exert(Servicer): Exertion

I

Exertionimpl

exert(Servicer): Exertion

ServiceTask ServiceJob

exert(Servicer): Exertion exert(Servicer): Exertion

Figure 2.4. Service oriented Tasks and Jobs

In afederated service environment, not a single service makes up the system,
but the cooperation of services. A service-oriented job may consist of tasks that require
different types of services. Services can be broken down into small service methods
instead of providing one huge all-embracing service. These smaller methods then can be
distributed among different hosts to allow for reusability, scalability, reliability, and load
balancing.

28

These grid concepts cannot just be applied to computational tasks. They can, and
should be, applied to data as well. Once afile is submitted to the network, it should stay
there. It should never disappear just because afew nodes or the network segment goes
down. In addition, it should not matter what client node is used to request the file. With
the SILENUS distributed file system in place, SORCER will also provide reliable and
scalable file-based data services complementing the existing method services.

Jini Network Technology

The Jini network technology enables Java software to create dynamic networks
that are adaptive to change. Jini uses a Service Oriented Architecture approach to
network services. It is especialy useful for scalability, evolvability and flexibility.
Services can easily be replaced in runtime, started on multiple servers, or even migrated
form one computer to another. [28, 74]

Jini technology was originally created by Sun. It was then contribute to the Jini
Community in 1999. It is based on an open specification that can be developed through a
community process. The reference implementation is provided still provided by Sun.

Jini provides almost everything necessary for service oriented computing, as
described in the section called “ Service Oriented Architecture”. Jini makesit easy to
write services. Each service can register with a service registry. Service registries can be
discovered by multicast announcements. Service requesters may use the service registry
to find services and use them.

The dynamic nature of Jini is handled with leases. Each network service
registering with another network service must obtain alease. The lease must be renewed
ingiven intervalsor it will expire. This allows the detection of unreachable nodes, while
putting the actual load on the requesting object, not the provider. L ease times may be
adjusted depending on the stability of the network involved. A reliable network can work
with higher lease times, while it is very desirable to have shorter leasesin unreliable
networks to detect disconnection quickly.

Jini also provides a standard to attach user interfaces to services. This ServiceUl
standard allows the development of Jini service browsers. A Jini service browser will
pick up al the registrars and display their services. If a service has an attached user

29

interface, the service browser can download and display that user interface to the user
without having to install or configure any software locally. One example of such service
browser software isthe IncaX Service Browser. [11, incax]

Peer-to-peer networking

Another network technology widely used for modern distributed architectures
IS peer-to-peer networking. In peer-to-peer applications, each peer is equal. Peers
communicate through an overlay network directly with each other. This eliminates the
classical bottlenecksin client—server solutions.

Unfortunately, peer-to-peer has a bad reputation. It was first widely used by the
application "Napster". Users were able to share music files with other usersin afairly
fast and reliable way. In the peer-to-peer architecture, files are downloaded from other
users rather than a central server. This makes peer-to-peer technology hard to control.

It istherefore very often used for illegally distribution of files. Some companies even
want to ban peer-to-peer technology because of that. However, peer-to-peer aso has
many legitimate uses. Most Linux distributions are now released through peer-to-peer
technology to save server capacity and increase download speed. Common peer-to-peer
applications today include Gnutella, KaZaa, eDonkey, BitTorrent, and JXTA.

JXTA (short for Juxtapose) is a set of protocols that allow any device on the
network to communicate and collaborate. JXTA provides an overlay peer-to-peer
network that clients can use to communicate with each other. The JXTA protocols are
defined language independent. A reference implementation for Java exists and is very
stable. [65]

Bill Joy and Mike Clary from Sun Microsystems started the JXTA project
originally. The specifications and implementation where then made open-source and
available on the IJXTA web page.

JXTA focuses on peer-to-peer technology. Discovery in IJXTA is made by
the provider sending out service advertisements. These have to be sent out regularly
for service requesters to find them. So-called rendezvous peers can cache these
advertisements. Once arequester has found a service advertisement, it can use the JXTA
overlay network to acquire avirtual channel between the requester and the provider. This
channel can then be used to send messages back and forth.

30

JXTA isbuilt for far distributed peersin an unstable network. A cached
advertisement may provide alink to a service that has not been existent for along time. A
service must therefore be actually contacted before any assumption about its availability
can be made.

When comparing JXTA and JINI the first distinction is the range of its
application. JINI is designed for local area networks (LAN) and can be used over WANSs
with the use of specia proxies. JXTA is designed for wide area networks (WAN) and
all its network overlay is based on that. Fortunately, these two can be combined: Jini
reguests can be sent over the JXTA network. This provides the best of both worlds: Fast,
optimized local access and reliable remote access via the IXTA network. [29]

SORCER

SORCER is afederated S2S framework that treats service providers as network
objects with awell-defined semantics of service-object-oriented (SOO) programming
based on the FIPER technology. [30, 31, 32]

Each SORCER provider offers services to other peers on the object-oriented
overlay network. These services are exposed indirectly by methods in well-known
public remote interfaces and considered as elementary (tasks) or compound (jobs)
program instructions of SOO programming methodology [30]. A SORCER program
can be created interactively [32] or programmatically (using SORCER APIs) and
their execution can be monitored and debugged in the overlay network [33]. Service
providers do not have mutual associations prior to the execution of a SOO program;
they come together dynamically (federate) for all component tasks and jobs in the SOO
program.

Each provider in the federation executes atask, or ajob. A special SORCERS
infrastructure services called jobber coordinates these jobs[30]. However, ajob can be
sent to any peer. A peer that is not ajobber is responsible to forward the job to an existing
jobber in the SORCER grid and return results to the requester. Thus, any peer can handle
any job or task. Once the job execution is complete, the federation dissolves and the
providers disperse and seek other SOO programs to join. In addition, SORCER supports
atraditional approach to grid computing - likein Condor [34] and Globus[35] style.
Here, instead of SOO programs being executed by services providing business logic for

31

requested tasks, the business logic comes from the service requesters executable program
that seeks compute resources on the network provided by grid services. These services
in the SORCER grid are as follows: GridDispatcher and Jobber for traditional grid job
submission, Caller and Tasker for task execution. [36]

To integrate applications and tools on a B2B grid with shared engineering data,
the File Store Service (FSS) [37] was developed as a core service in SORCER. The
value of FSSis enhanced when both web-based user agents and service providers can
readily share the content in a seamless fashion. The FSS framework fits the SORCER
philosophy of grid interactive SOO programming, where users create distributed
programs using exclusively interactive user agents. However, FSS does not provide
the S2Sflexibility with separate specialized and collaborating service providersfor file
storage, replication, and meta information that are presented in this dissertation.

Eight truth of networked computing
Based on the fallacies given in the section called “Eight fallacies of distributed
computing”, service-oriented architectures take into account the following eight truth of
distributed networking:
The network can fail at any time
Network messages arrive in random order
The network is always too slow
Someone is always listening
Hosts get added and removed at any time
Every system has its own administrator
Moving data costs money
There will be any possible combination of OS/ Architecture out there. They all want
to be part of the network!

O N U~ wDhPRE

Security in existing file storage solutions
In this section the security concepts of different existing storage solutions are
looked at. In particular, the granularity of security privilegesis examined. Then the
different authentication mechanisms are looked at. And last, some privacy features are
discussed.

32

Privileges

Security privileges are usually defined through the underlying operating system.
A UNIX server sharing files may only export the UNIX permissions. Therefore, the
permissions are examined by their native operating system instead of the actual network
file system.

UNIX (NFS, GlobusFTP)

The UNIX permission model is the oldest and simplest of the models examined
here. Being smple is not necessarily a disadvantage: It isthe easiest permission model to
learn and to apply. This has kept this model in use for over 30 years.

The UNIX model defines permission bits for owner, group, and others. The actua
permissions are for the first match and not the maximum permissions. A file owner
can actually exclude themselves from permissions for read and write. The owner or the
administrator may change file permissions.

The administrator in a UNIX system has full accessrightsto all files and
directories. This may be seen as an advantage, as the administrator may need to be
able to movefilesto adifferent location. It may also be seen as a disadvantage as the
administrator may read every personal file. The UNIX system does not provide any
confidentiality. Administrators must be trustworthy.

Newer UNIX systems such as Solaris define access control lists (ACLS) to extend
the basic permission model. These ACLs allow a more fine-grained permission model.
Instead of setting the permissions for one user or one group the permissions may now be
set explicitly for any user and any group. ACLs allow very powerful, fine-grained sets of
permissions, but are more difficult to manage. [67]

Access control lists are UNIX-implementation specific and are not compatible
between different operating systems. As such, extensions for ACLs exist as extensions to
the NFS 2 and 3, but they work only from and to Solaris systems. NFS version 4 defines
astandard for ACLSs, but this protocol is not widely supported yet. Most UNIX and
UNIX-like systems still support only the basic UNIX permission model.

UNIX provides the three basic permissions read, write, and execute for files.
These attributes can be set for the file owner, a specific group, or everyone else. Read and
write are usually honored, while execute is more of a hint to the operating system. The

33

execute bit specifies that afile contains either binary code or an executable script. Two
special permissions setuid and setguid can be set on executable files to allow changing
the effective user and group. These special bits can lead to security problems and are
ignored in many NFS implementations.

The same three permissions are also defined for directories, but their meaning isa
little different than for files. Reading a directory means listing the filesin this directory.
Write permission for adirectory allows adding and removing files and links from that
directory, even if this entity does not have the specific rights for the file. The execution
bit for directory maps to opening and executing filesin this directory, and also listing
directory contents. A directory with execute permissions can be traversed. Traversing
adirectory means being able to access subdirectories and use al rights on that given
subdirectory. Since listing filesis forbidden, the names of the subdirectories must be
known. A specia permission bit for directoriesis the sticky bit. In a directory with the
sticky bit only the file owner and the administrator may delete files. Thisallows the
creation of common directories, such as/ t np where everyone has read and write access
on the directories, but not every user may delete every other usersfiles.

Windows (CIFS)

On Windows the security depends on the underlying file system. The two most
common file systems for Windows are FAT and NTFS.

The FAT (file allocation table) file system is older and aremainder from the DOS
origins of the Windows operating system. The current version is the FAT32 system; older
versions are sometimes called FAT12 and FAT16. The FAT system has absolutely no
security features.

The NTFS (NT file system) was developed later for the more secure and robust
versions of Windows based on Windows NT. As such, it supports a complete security
model. Since all recent versions of Windows support NTFS, thisis the model that will
now be called the Windows model.

Windows uses ACL s for users and groups. Every ACL may define an allow or a
deny bit. To calculate the actual permissions, the allow bits of all groups and for the user
itself are combined using alogical or. The same happens for the deny bit. A user hasa
permission only if the allow bit is set and the deny bit is unset.

This model has received some criticism. If only allow bits are used, a user has
the maximum possible permissions. A user that is part of one group may suddenly have
more permissions than desirable. This may give a user to many rights. On the other
hand, the deny bits cannot be overwritten. If auser is part of agroup for which a specific
resource is denied, even an allow bit for a specific user will not alow the user to access
the resource. This may give a user not enough rights.

Every file and directory on the NTFS has exactly one owner. Only the owner may
change the ACL and allow or deny rights to other users. Ownership of files cannot be
given to other users.

An administrator may not set file permissions. Thisis very different from the
UNIX administrator model. On Windows, an administrator may take ownership of
files and directories. Once the administrator is owner, the permissions may be changed.
Administrator may not transfer the ownership to other users. They may therefore not give
the ownership back to the original user. An administrator is therefore unable to read the
files of auser without the user being able to find out due to changed ownership.

The NTFS knows two sets of permissions. Basic permissions and special
permissions. In most cases the basic permissions are sufficient. The specia permission
may be used if amore fine-grained permission model is desired.

The basic permissions for files are full control, modify, read and execute, read,
and write. The permissions for directories are full control, modify, read and execute,
list folder contents, read, and write. Some of these permissions include the lesser
permissions: A user with full control will also have all the other permissions. The
following tables are taken from [76]:

35

NTFSFile Allowed Access
Permission

Read This allows the user or group to read the file and view its
attributes, ownership, and permissions set.

Write This allows the user or group to overwrite the file, change its
attributes, view its ownership, and view the permissions set.

Read & Execute This allows the user or group to run and execute the application.
In addition, the user can perform all duties allowed by the Read
permission.

Modify This allows the user or group to modify and delete afile including
perform all of the actions permitted by the Read, Write, and Read
and Execute NTFS file permissions.

Full Control This allows the user or group to change the permission set on a

file, take ownership of thefile, and perform actions permitted by
all of the other NTFS file permissions.

Table 2.2. NTFS basic file permissions

36

NTFS Folder Allowed Access
Permission
Read This allows the user or group to view the files, folders, and sub
folders of the parent folder. It aso alows the viewing of folder
ownership, permissions, and attributes of that folder.
Write This allows the user or group to create new files and folders

within the parent folder as well as view folder ownership and
permissions and change the folder attributes.

List Folder Contents

This allows the user or group to view the files and sub folders
contained within the folder.

Read & Execute

This allows the user or group to navigate through all files and sub
folders including perform all actions allowed by the Read and List
Folder Contents permissions.

Modify

This allows the user to delete the folder and perform all activities
included in the Write and Read & Execute NTFS folder
permissions.

Full Control

This allows the user or group to change permissions on the folder,
take ownership of it, and perform all activitiesincluded in all
other permissions.

Table 2.3. NTFS basic folder permissions

The special permissions allow a more fine-grained setting of possible
permissions. For files these are: execute file, read data, read attributes, read extended
attributes, write data, append data, write attributes, write extended attributes, delete,
read permissions, change permissions, take ownership, and synchronize. And the special
permissions for directories are: traverse folder, list folder, read attributes, read extended
attributes, create files, create folders, write attributes, write extended attributes, delete
sub folders and files, delete, read permissions, change permissions, take ownership, and
synchronize. The following tableisalso from|[76]:

37

Permission

Description

Traverse Folder /
Execute File

This allows or denies a user to browse through afolder's sub
folders and files where he would otherwise not have access. In
addition, it allows or denies the user the ability to run programs
within that folder.

List Folder / Read
Data

This allows or denies the user to view sub folders and fill names
in the parent folder. In addition, it allows or denies the user to
view the data within the files in the parent folder or sub folders of
that parent.

Read Attributes

This allows or denies a user to view the standard NTFS attributes
of afile or folder.

Read Extended
Attributes

This allows or denies the user to view the extended attributes of a
file or folder, which can vary dueto the fact that they are defined
by the programs themselves.

Create Files/ Write
Data

This allows or denies the user the right to create new filesin the
parent folder. In addition, it alows or denies the user to modify or
overwrite existing datain afile.

Create Folders/
Append Data

This allows or denies the user to create new foldersin the parent
folder. In addition, it allows or denies the user the right to add
datato the end of files. This does not include making changes to
any existing datawithin afile.

Write Attributes

This allows or denies the ability to change the attributes of afiles
or folder, such as Read-Only and Hidden.

Write Extended
Attributes

This allows or denies a user the ability to change the extended
attributes of afile or folder. These attributes are defined by
programs and may vary.

Table 2.4. NFS special access permissions

38

Permission Description

Delete Sub folders | Thisallows or denies the deleting of files and sub folder within
and Files the parent folder. It also true that if this permission is assigned
files and sub folders can be deleted even if the Delete special
access permission has not been granted.

Delete This allows or denies the deleting of files and folders. If the user
does not have this permission assigned but does have the Delete
Sub folders and Files permission, she can still delete.

Read Permissions | Thisallows or denies the user the ability to read the standard
NTFS permissions of afile or folder.

Change Permissions |This allows or denies the user the ability to change the standard
NTFS permissions of afilesor folder.

Take Ownership This allows or denies a user the ability to take ownership of
afileor folder. The owner of afile or folder can change the
permissions on the files and folders she owns, regardless of any
other permission that might be in place.

Synchronize This allows or denies different threads to wait on the handle
for the file or folder and synchronize with another thread that
may signal it. This permission appliesto only multi threaded,
multiprocessing programs.

Table 2.5. NFS special access permissions (cont.)

AFS and Coda

Both AFS and Coda provide the same security model. Since Coda is the continued
development of AFS it inherits the security model from AFS. The AFS security model
has been very successful in organization wide deployment. In this section the AFS model
is examined.

39

AFS uses access control lists with allow and deny bits. The mechanism isthe
same as on Windows: All allow bits are joined through or, then all deny bits are joined
through or and subtracted from the allow bits. The remaining permission bits are the
actual permissions.

In AFS, the file owner and the admin may change permissions. Thereis no need
to take ownership of existing items. The disadvantage is that administrators may give
themselves read permissions, read afile, and then remove the permissions to cover their
trace. The advantage is that administrators have full access, which is needed for moving
filesand for backup purposes.

AFS does not provide file-based security but only directory-based security. The
permissionsin adirectory are valid for al filesin that directory. The rationale for thisis
manageability. ACLs can lead to very complicated security permissions. Sometimes users
forget to set specific permission bits on their files. By reducing it to directory permissions
there are much less items to handle. Users must be aware of this though, as moving afile
from one directory to another directory will change its file permissions.

The security bits for directories provided by AFS are: lookup, insert, delete,
administer, read, write, and lock. Lookup allows viewing anything in this directory and
subdirectories. Insert allows creating new files. Delete is the permission for removing
or moving files. An administer bit provides access to change the security settings. Read,
write, and lock are file permissions that just apply to al filesin this directory for reading,
writing, and locking against concurrent use.

AFS aso provides eight special bitsthat can be user defined. These bits are
named A - H. There are no built-in provisions for these user bits other than retrieving and
setting them. They may be used to add additional meta data to the directories. One use
may be to emulate the archive, hidden, and system bits from the FAT file systems.

WebDAV with AC extensions

The WebDAYV protocol as specified in the original RFC does not have any
support for modifying or querying permissions. It was up to the WebDAYV provider to
enforce permission bits. There are standard provisions for authentication, however. There
is also a standard response for permission denied.

40

Thereis an extension to the WebDAYV protocol to provide access control. This
extension was defined later than the original WebDAYV protocol in[6]. There are
currently few implementations of these extensions.

These extensions provide for querying and setting of permission bits. Enforcing
these permissionsis up to the server. This allows full backward compatibility to the
WebDAV protocol without the access control extensions.

A server implementing the AC extension must allow the grant primitive. It
may optionally allow a deny primitive. Whether allow or deny has a higher priority is
unspecified. Thereisan optiona deny-before-grant option that may be set to specify this
behavior.

WebDAV AC does not specify any special rights for file owner or administrator.
It is up to the server whether to grant automatic permissions.

The permission bitsfor filesin WebDAV AC are: read, write, write-properties,
write-content, unlock, read-acl, read-current-user-privilege-set, write-acl, and all.

Each server may implement some or all of these permissions. The read, write, and all
permissions are aggregate permissions. Having these permissions or being denied them
counts for al sub permissions. The unlock permission may allow someone that is not the
lock owner to break afile lock.

The WebDAV AC security bitsfor directories are: read, write, write-properties,
unlock, read-acl, read-current-user-privilege-set, write-acl, bind, unbind, and all. Write
IS an aggregate permission for write-properties, bind, and unbind. Binding refers to the
creation of files. Unbinding refersto the deletion of files. The all permission aggregates
all permissionsjust asfor files.

Security Table
The following two tables give an overview over the file and directory permission
bits present in the discussed operating systems and protocols.

41

Permission

UNIX

Windows |AFS

WebDAYV +
AC

Read

X

Read data

Read attributes

Read ext. attributes

X

Write

Write data

Append data

Write attributes

Write ext. attributes

X | X| X| X

Lock

Unlock

Executefile

SetGUID

SetUID

Delete

Read permissions

Read own permissions

Change permissions

X

Take ownership

X

Synchronize

X

Table 2.6. File privileges in different file systems

42

Permission UNIX Windows |AFS WebDAYV +
AC

Traverse X X

List X X X

Read attributes X

Read ext. attributes X

Write attributes X X

Write ext. attributes X

Create / Delete sub items X

Create sub items X X

Createfiles X

Create folders

Delete items X X X

Owner delete only X

Delete (this) X

Unlock X

Read permissions X X

Read own permissions X

Change permissions X X X

Take ownership X

Synchronize X

Table 2.7. Directory privilegesin different file systems

43

Authentication mechanisms

Each one of these existing systems uses one of the following three authentication
mechanisms: client side authentication, server side authentication, or third party
authentication. Each one of these systems has advantages and disadvantages that will be
discussed here.

Client side authentication

By default NFS provides client side authentication only. When an NFS shareis
mounted on aclient host, it is the client hosts responsibility to ensure proper access. This
iSsvery convenient in amulti user system: Multiple users may be logged on the same
client host, but still have different access rights on the server system. The problem is that
the client host has to be trustworthy. An illegitimate client can very easy ignore these
security measures and give its user full access. The standard NFS protocol is therefore
only safe in controlled environments.

Server side authentication

Most systems use server side authentication. Windows with server authentication
and WebDAYV are two examples. In these systems a user has to authenticate himself with
auser name and password at the server where she wants to use the resources. The server
will then verify the password and grant or deny access. Thisis secure if the server is
secure and the connection is secure. In some implementations, the password is not send
directly, but used to facilitate a challenge response mechanism. In these cases the server
side authentication is safe. There are two problems with server side authentication: To
create a connection, a user has to provide a password. Thisis possible in most cases,
but it isimpossible for an administrator to prepare connections for users. It also disables
multiple users on the same host from reusing the same connection without introducing
security holes. The second problem is that the password is transferred to the server. The
password may be intercepted on the way or on the server. Users also tend to store their
password on the client host to make it easier for them to access shared resources. These
client hosts are usually not as well protected as servers, making them an ideal source for
finding passwords.

Third party authentication

In athird party authentication mechanism the client authenticates with athird
party. Thisthird party can then voucher for the user being the claimed user. Coda and
AFS use Kerberos as their trusted third party. Windows can use a Windows domain
server as atrusted third party. Trusted third party authentication claims to be the most
secure. The enable a user to log on once and then use different services. This minimizes
password use and therefore makes it easier to persuade users not to store their password.
Trusted third parties require a substantial investment in infrastructure. In most cases a
special server hasto be set up and managed. This system scales only as well as the third
party scales.

Privacy mechanisms

In the discussed systems privacy is provided through the read permission. If
auser hasthe read permission, the files may be read. If a user does not have the read
permission bit, then accessis denied. Thisworks only aslong as the systems are safe
and administrators are completely trustworthy. In the case of NFS this has to apply for
both the server and the client systems. In all other cases this has to apply to the server
system only. In al the systems a user with physical accessto the host has the possibility
to access al data. In all of the discussed solutions a user with administrator rights has the
possibility to read all the data on the system. The Windows security model is the only one
of the discussed models where the user will even be able to find out that an administrator
has read afile.

45

CHAPTER 3. REQUIREMENT ANALY SIS

The requirements for the system need to be identified, before the actual systemis
designed. It needs to be clear which requirements must be met. After all, there is no point
in developing a system that solves the wrong problem.

Most of the requirements have aready been identified. The features that are
desirable in any file storage solution are described in the section called “ File system core
features’. Architectural qualitiesfor distributed systemsin genera are described in the
section called “ Architectural qualities for distributed systems’. To identify the exact
requirements system usage patterns have to be investigated. Based on these user roles
have to be identified.

File Storage Scenarios
To identify the requirements different scenarios have to be looked at first. Who
would benefit from an advanced file system? Who would be using this file system and
why? Moreover, what are the things that are important to this particular user group? Of
course, in the real world, there will not be a scenario exactly as described here, but rather
amixture. Nevertheless, theses examples will still help to find the actual uses.

Small work group

| will start with the small work group because thisis very easy to describe.
Figure 3.1, “Small work group” shows an example. In most cases, thereis onefile server,
one Internet-gateway (sometimes the same host) and a small number of client host
(maybefive). Usually all client hosts are either personal computers or shared hosts. All
data transfer is done via shared folders on the server.

This system lacks privacy. In most cases, there is a shared folder on the server.
All users can read and store files there. There is nothing holding back one user from
deleting the file of another user.

Thereis also usually no or atedious backup system. All work has to stop should
the server fail. In the case of an unrecoverable crash, all previous work could be lost.

46

Last, but not least, the client hosts are not used to their full potential. Most have
extra hard drive space and, depending on the type of work, extra clock cycles. Some hosts
areturned off at night, but others are just running idle, using electricity and providing
nothing for other users.

A typical small work group example. Thiswork
group has one server and five clients (four PCs, one laptop)
Figure 3.1. Small work group

High-Performance Computing Lab

A high-performance computing lab is very similar to the small work group.
The clients here are not idle, the distribution of CPU cyclesis already taken care of.
Nevertheless, many applications require a common data set. Thisisusualy very large,
and therefore not on every host, but on one single server. Multiple hosts (25, 50, 100,
...) aretrying to get parts of the dataset at the same time. If not carefully planned, this
performance leak can seriously reduce performance.

Large network
A large network is similar to the small network. However, suddenly there is more

than one server. Some of these might provide backup for other servers. A very important
feature hereisthat users want to be able to log into a different computer, maybe evenin a
completely different location and still want to be able to access their files. Files should be
stored as close to the user as necessary, for performance, but should aso be migratable to
other hosts. Maybe two people from different location have to share common files. They
should be able to share these files quickly.

a7

Home user

Thetotal opposite of the large network is the home user. The home user usually
has very few computers: Maybe one desktop and a laptop, maybe two PCs for multiple
people. Disk spaceis aways low. Hosts usually have very different performance features,
| might be asked to move to the other computer because my brother wants to play a game.
In the case of the home user transparent file access to as much disk space as possibleis
very important.

Concurrent Engineers

Distributed, concurrent-engineering teams would greatly benefit from this system.
They work at different physical locations, on different computer systems, with different
computer architectures. However, common data such as design documents, schedules,
engineering data, notes, etc. have to be shared. The support for versioning will allow
the team to go back to older versions, if necessary, but most importantly to ensure
that the current version is available to all team membersinstantly. Data will aways be
downloaded from one of the hosts available. If afileis aready available on ahost in the
local network, thislocation will be preferred over ahost at any remote location. This
enables faster updates and ensures that slower WAN links are less used.

Student Computer Lab

A computer lab isalarge array of computers. All computers should behave
identically to the user, and offer the same file space. These lab systems usually use a
central file storage server, which isasingle point of failure. However, each lab host has a
big hard drive nowadays, which is hardly used, if at all.

Astronomy
In a sky survey, the amount of data collected is very large. There must be some

way to spread data files over multiple computers, or to make whole or partial files
available to different users on different hosts. These files are usually associated with
metadata. The metadata has to be kept in some kind of database to allow fast retrieval of
the important data. [38, 69]

48

High-energy physics

When the Large Hadron Collider (LHC) study of subatomic particles and forces
at CERN will launch in 2007, it will be one of the greatest data management challenges.
More than a gigabyte of datawill be generated every second. This datawill have to be
distributed among researchers around the world. With these |large amounts of data, it is
very important to prefer local replicato remote replica locations to minimize bandwidth

usage. [39]

Host types on the network
Based on these usage scenarios, hosts participating in the network can be
classified. Each host type has different properties.

Server

Server hosts are usualy very reliable. They might have aRAID system,
have fail-over power supplies, multiple network interfaces, and other reliability
provisions. Server class computers are the easiest to use for administrators of distributed
storage systems. Only one system has to work, only one system has to be backed up.
Unfortunately, there also have to be client systems to make actual usage of the server.

Always up client

Administrators' favorite client hosts are the ones that are always up. These can
easily be maintained remotely. They can be aso be used to provide additional server
features. However, not too many server features, since there is always a person wanting
to work on the host.

Work time up client

Work time up clients are usually on 40 hours aweek. A person turns her personal
computer on whenever she enters the office, and turnsit off whenever she leaves. Most
leave the host running during lunchtime, but even that is uncertain. Usually these are
personal hosts. The user is concerned about access speed to her personal files, and feels
the host slow down if other people access data on the same host.

49

L aptop
A laptop is the most complicated system to support when it comes to distributed

file systems. Usually laptops are moved around from one network to another, connecting
and disconnecting it from servers al the time. Fortunately, laptop users are used to this,
and therefore can be expected to specify which files they want to work on before they
disconnect. Nevertheless, as soon as the Iaptop is connected to the Internet the laptop user
wants to be able to access her files.

Mobile client

The last type of user isa special case of the laptop user, the so-called mobile
client. When talking about mobile, I mean small devices like personal digital assistants
(PDA) and cell phones. These devices usually connect temporary to the network with a
very low bandwidth. Users do not expect to have access to al data, but they do want to
have certain files available, usually calendar, address book, and notes.

Use Case Roles
Based on these usage scenarios different usage roles can be defined. These roles
areregular file system users, administrators, optimizer services, service provisioners, and
intergrid service providers.

50

File system users

SILENUS

Browse Files

Upload Files
Download Files
Modify File Metadata

Figure 3.2. Typical user casesfor afile storage system

User

Figure 3.2, “Typical user casesfor afile storage system” shows the use cases that
areidentified for the regular user. These typical tasks can be executed on any existing file
system.

Administrators

SILENUS

Replicate Files
Delete File Replica
Erase File Permanently

Figure 3.3. Administrator use cases for areplicated file system

Administrator

51

Figure 3.3, “Administrator use cases for areplicated file system” shows the
use cases for administrators. The administrator has the power to initiate al replication
manually. If needed, administrators should be able to delete files completely.

Optimizer services

SILENUS
Replicate Files
Delete File Replica
Optimizer

Figure 3.4. Optimizer use cases for areplicated file system

To provide manageability the system should provide internal optimizer services.
Figure 3.4, “Optimizer use cases for areplicated file system” shows the use cases for
these optimizer services. They have to be able to manage file replication by creating and
deleting file replicas.

Service provisioners

SILENUS

Get Service State
Stop Service

Figure 3.5. Provisioner user cases for areplicated file system

Provisioner

52

The service provisioner is another type of optimizer service. As Figure 3.5,
“Provisioner user cases for areplicated file system” shows a provisioner has to be ableto
start (provision) and stop services in the network. To make the decision, which services
to start or stop it needs to be able to query the current state of each service.

Intergrid service providers

SILENUS

Upload Files
Download Files

Figure 3.6. Use cases for the intergrid meta computer

Metacomputer

Another type of usageroleis an intergrid service provider. These provide
computing services, providing a meta computer. Figure 3.6, “Use cases for the intergrid
meta computer” gives an overview of the use cases required for meta computing. A
service hasto be able to find data files provided, download them, and upload them after it
is done processing.

Use Case Design

Now that it is clear which use caseis triggered by which user role each use case
has to be described in more detail. A textual use case description has to be developed for
every use case.

53

UseCasel

Browse Files

Goad in Context

User wants to view filesin the system.

Scope & Level User action.

Preconditions User has accessed Human Interface; User islogged in.
Success End User seesfiles.

Condition

Failed End Condition

A filelisting is not available.

Primary, Secondary
Actors

User, SILENUS system.

Trigger Human Interface starts.
Description Step|Action
1 |Thesystem fetchesafilelist.
2 |Thefile system structure is displayed as atree.
3 |The user expands directories.
4 |Thefileisfound. User selectesthefile.
Extensions Step |Branching Action
la |Thefile systemisunavailable.
4a |Thefileisnot available. The user hasto find another way to
accessthefile.
Sub Variations Step |Branching Action
2 |Instead of atree the system may display alist of filesand
directoriesin the root directory.

Table 3.1. Browse Files Use Case

Use Case 2

Find Files

Goad in Context

User wants to find specific filesin the system.

Scope & Level User action.

Preconditions User has accessed Human Interface; User islogged in.
Success End User find thefile.

Condition

Failed End Condition

Thefileis not available.

Primary, Secondary
Actors

User, SILENUS system.

Trigger User calls Find Files action from menu.
Description Step|Action
1 |The user enters search criteria
2 | Thesystem finds files based on matchesin the file metadata
3 |Thelist of filesis displayed to the user
Extensions Step |Branching Action
3a |Thelist of filesisempty. The user may try again.
Sub Variations Step |Branching Action

1 |Search criteriamay be derived from the currently selected
file, e.g.: Find al files with the same name.

Table 3.2. Find Files Use Case

55

UseCase 3

Upload Files

Goad in Context

User wants to store filesin the system.

Scope & Level User action.

Preconditions User has accessed Human Interface; User islogged in.
Success End Thefileis stored in the system.

Condition

Failed End Condition

Thefileif not available in the system.

Primary, Secondary
Actors

User, SILENUS system.

Trigger User calls Upload Files action from menu.

Description Step|Action
1 |Theuser selectes adirectory as decribed in "Browse Files'.
2 | Theuser chooses upload.
3 |Thesystem displays atree of the local files and directories.
4 | Theuser selectsalocal file or directory for upload.
5 |Theselected files and directories are stored in SILENUS.
6 | The system now displays an updated list of filesand

directories.

Extensions Step |Branching Action
5a |No Byte Store service is available. The upload fails.
5b | Thereisnot enough space available. The upload fails.

Sub Variations Step |Branching Action

If the user agent is can start an active server process, it may
passively upload the files (pull file upload). If the user agent
isrestricted, it has to upload the files through a push upload.

Table 3.3. Upload Files Use Case

56

Use Case 4

Download Files

Goad in Context

User wants to retrieve files from the system.

Scope & Level User action.

Preconditions User has accessed Human Interface; User islogged in.
Success End Thefileisretrieved to the local file system.

Condition

Failed End Condition

Thefileis not available on the local system.

Primary, Secondary
Actors

User, SILENUS system.

Trigger User calls Download Files action from menu.
Description Step|Action

1 |Theuser selectesafile as described in "Browse Files'.

2 | The user selects download.

3 |Thesystem displaysthe local file system tree. The user

selects adirectory.

4 | The selected files are downloaded to the local file system.

Extensions Step |Branching Action

4a | Thefilesmay not be available. The user hasto try again.

4b | There may be insufficent space on the local file storage to
download thefile.

Table 3.4. Download Files Use Case

57

Use Case 5

Modify File Metadata

Goad in Context

User wants to change filesin the system.

Scope & Level User action.

Preconditions User has accessed Human Interface; User islogged in.
Success End The file metadata is updated.

Condition

Failed End Condition

The file metadata is unchanged.

Primary, Secondary
Actors

User, SILENUS system.

Trigger

User selected action.

Description

Step|Action

1 The user selectes afile as described in "Browse Files'.

2 |Thefile metadatais displayed in atable.

3 |Theuser may change the metadata.

4 | The metadatais updated on the metadata stores.

Extensions

Step |Branching Action

3a |Some metadata may be read-only.

Sub Variations

Step |Branching Action

3 |Deleting afileisalso changing its metadata.

3 |Renaming afileis achangein metadata.

3 |Moving afileisachange in metadata.

Table 3.5. Modify File Metadata

58

Use Case 6

Replicate Files

Goad in Context

Make afile available on multiple byte stores.

Scope & Level Administrator action. Optimizer action.

Preconditions A fileisuploaded and available at at |east one byte store.
Success End Thefileisavailable at another byte store.

Condition

Failed End Condition

Thefile could not be replicated.

Primary, Secondary
Actors

Administrator, Optimizer, SILENUS system, byte store service.

Trigger

A fileisuploaded; or afiles availability has dropped below a
given level.

Description

Step

Action

1

The system identifies the byte stores that the fileis stored
on.

The system identifies atarget bytestore.

It triggered copying between both byte stores.

The metadata is updated to reflect the new situation.

Extensions

Branching Action

No byte store may available. Thefile is unavailable and
cannot be replicated.

2a

No other byte stores may be available. The file cannot be
copied.

3a

The copying may fail. In this case another target byte store
has to be selected.

4a

The metadata may have changed in between. It must be
ensured that there is no conflict.

Table 3.6. Replicate Files Use Case

59

UseCase7

Delete File Replica

Goad in Context

A filereplicais removed from a byte store.

Scope & Level Administrator action. Optimizer action.

Preconditions A fileisuploaded and available at multiple byte stores.
Success End Thefile is deleted from a byte store.

Condition

Failed End Condition

A file could not be deleted.

Primary, Secondary
Actors

Administrator, Optimizer, SILENUS system, byte store service.

Trigger A file exceeds its useful availability level.
Description Step|Action
1 |Thesystemidentifies the byte storesthat thefile is stored
on.
2 | Thesystem identifies a byte store to delete from.
3 |The metadatais updated to remove the byte store.
4 | Thebyte storeis asked to delete thefile.
Extensions Step |Branching Action
la |No byte store may available. The fileis unavailable and
cannot be deleted.
3a | The metadata may have changed in between. It must be
ensured that there is no conflict.
4a | The byte store may have become unavailable. In this case

the delete request must be retried at alater time.

Table 3.7. Delete File Replica Use Case

60

Use Case 8

Erase File Permantly

Goad in Context

A fileis completely deleted from the file system.

Scope & Level Administrator action.

Preconditions Administrator has accessed Human I nterface; Administrator is
logged in.

Success End Thefileis unavailable.

Condition

Failed End Condition

Thefileisstill available.

Primary, Secondary
Actors

Administrator, SILENUS system, byte store services.

Trigger Administrator triggered action.
Description Step|Action
1 |Theadministrator selects afile as shown in "Browse Files'.
2 | The adminstrator chooses to delete a file permanently.
3 |Thesystemretrievesalist of all byte stores containing the
file.
4 |1t updated the metadata to reflect the deletion.
5 |All byte stores are asked to delete thefile.
Extensions Step |Branching Action

5a [Not al byte stores are available. In this case the delete
request must be retried at alater time.

Table 3.8. Erase File Permanently Use Case

61

Use Case 9

Get Service State

Goad in Context

A service provides information about its current state.

Scope & Level System information.

Preconditions A serviceisidentified.

Success End Service quality information is available.
Condition

Failed End Condition

Service quality information is not available.

Primary, Secondary
Actors

SILENUS system; Optimizer service.

Trigger

Automatically

Description

Step|Action

1 |Thesystemfetchesalist of all services.

2 |The services provide information on their current state.

Table 3.9. Get Service State Use Case

62

Use Case 10

Provision Service

Goad in Context

Make another service availae.

Scope & Level Provisioner action.

Preconditions Service states are collected.
Success End A serviceis started on another host.
Condition

Failed End Condition

The service could not be started.

Primary, Secondary
Actors

SILENUS system; Optimizer service.

Trigger Service state shows that a service is overloaded.
Description Step|Action
1 |Theprovisioner fetches the service state from all services.
2 |It checksif any serviceis overloaded.
3 |A new host to run aservice isidentified.
4 |Theserviceisdeployed at the target host.
5 |Theserviceisstarted on the new host.
Extensions Step |Branching Action
2a |No services are overloaded. No new services need to be
provisioned.
3a |No hosts may be available. Try back at alater time.
4a |Deployment may fail. Go back to step 3.
5a |Starting the service may fail. Undeploy the service and go

back to step 3.

Table 3.10. Provision Service Use Case

63

Use Case 11

Stop Service.

Goad in Context

A running service is terminated.

Scope & Level Provisioner action.
Preconditions Service states are collected.
Success End The serviceis stopped.
Condition

Failed End Condition

The serviceis still running.

Primary, Secondary
Actors

SILENUS system; Optimizer service.

Trigger A serviceis underused.
Description Step|Action
1 |Theprovisioner fetches the service state from all services.
2 |Thechecksif aserviceisunderused.
3 |A servicethat can be terminated is identified.
4 |ltisensured that all the data available on this serviceis till
available on other services.
5 |Theserviceisterminated.
Extensions Step |Branching Action
2a |Theservicesmay al bein use.
4a |Some data may not be replicated on other services. In this
case the service cannot be terminated.
Sub Variations Step [Branching Action

4 |For byte stores it must be ensured that al files stored on
this byte store are also available on other byte stores. For
metadata stores it must be ensured that this serviceis
synchronized with the other metadata stores.

Table 3.11. Stop Service Use Case

CHAPTER 4. ARCHITECTURE AND DESIGN

In this chapter a new model for a distributed file storage solution is introduced.
Thismodel is specified in terms of its system architecture, interfaces, and interaction
among its components.

To specify asystem, its architecture has to be defined first. The architectureis
necessary to understanding and manage system complexity. Once the architecture is
specified individual components can be designed.

Reference Architecture
Computing System
Framework C??%sses

SW Architecture \'

Design

Y
Feasibility Study

Figure 4.1. Class Model vs. Architecture and Design

A service-oriented approach is chosen to satisfy the given requirements. The
system will be broken up into smaller components, which will be implemented as
services. Each service has a specific responsibility. Since all services are dynamic
in nature, there is no specific deployment to any particular host. Each host can host
none, one, some or al of the services. These services will use the SORCER network to
communicate with each other. [40]

65

Human
Interface

=
Metadata
Store

WebDA\?I

Adapter

Figure 4.2. Silenus components communicating over the SORCER network

A model for agrid based environment

In a grid-based environment there is no clear notion of aclient and a server
computer. Every node inthe grid isaclient and a server at the sametime. Itisa
server, since it offers services to other computers. It can offer computing services
and data services. It isaclient, since it requires services from other nodes. It requires
computational results from other nodes through shared data.

A different architectural model, such as a peer-to-peer or a service-to-serviceis
required. In aclassical client-server application alarge load is put on one server host. If
multiple grid clients try to access the same server host at the same time, the server will be
overloaded. In a peer-to-peer architecture, every host isaclient and a server at the same

66

time. The load is now balanced between all hosts. Thisis a preferable model if all hosts
are equal. The service-to-service architecture splits up the functionality of the system
into smaller services. Each host may now run zero, one, or multiple service providers. A
service requestor can use any service provided by any host in the network. This supports
different host configurations: A set of hosts may run data service providers, another set of
host may run computational service providers, and some hosts may run both.

| therefore propose the following changes to Coulouris model to be used asagrid
model: Flat file service and directory services will become independent service providers.
The client module will be stripped of all duplicated functionality.

Having theflat file service and the directory service as independent service on
the network provides scalability. A service requester may choose any directory and flat
file service that is available. Traversing directories does not use the flat file service, thus
saving resources.

The client module will be stripped from its duplicated functionality. If local
caching isdesired, aflat file and directory service can be run on the local host.

Thin worker grid node Storage grid node

Application

Worker Grid Node

Flat file service

Application Client module

Client module

Directory service
: ki : File store grid node Directory grid node

Directory service

Flat file service Directory service

Flat file service

Figure 4.3. Grid model for data storage

SILENUS architectural model
The new SILENUS architectural model extends the traditional file storage model.
SILENUS distinguishes between client modules, a directory service, and aflat file
service. It introduces extra management services for coordination and for optimization.

67

=S| g8]
Human : Byte
Interface | O Store —OD—
WebDav:’ O Byte g1
Adapter Replicator

B]
7]]

NFs W Metadata
Adapter O store E]—O
N). QA i CO_Transaction
Adapter Managerg]

Figure 4.4. The SILENUS Components

The Human Interface, WebDAV Adapter, NFS Adapter and JXTA Adapter are
client modules. Each one of them serves a particular type of client. The ones given here
are just examples, adapters could be written for any other existing file storage solution.
The human interface (ServiceUl) provides support for file storage and management
through a proprietary user interface. It provides access to the extra features, which are
not available through the other interfaces: Advanced features such as manual migration,
number of replicas, log-file viewing, and others. The service interface should only
be needed for these extra features and can be ignored by most users. The WebDAV
Adapter provides support for operating systems that have support for WebDAV, such
as Windows, Mac OS X, and newer UNIX systems. It provides support for existing
applications. This gives current operating systems the possibility to use the file storage
without having to install aclient. The NFS adapter provides support for older UNIX
systems. A IXTA adapter provides support for the IXTA content management interface.
These adapters are just examples of mapping from SILENUS to existing systems, other
adapters may exist aswell. Unlike the Coulouris Model, these adapters do not have to
provide support for advances features, such as caching, which makes them smaller and
easier to adapt to other interfaces.

68

The SILENUS Facade and Transaction Manager introduce a new coordination
service. To make the client modules even smaller, the coordination between the client
modules and the providing servicesis sourced out to the SILENUS Facade. It provides
agateway to the SILENUS file storage. This component provides a facade to the
underlying services. It takes care of transactional semantics between file and meta
information storage. It provides one easy interface for the user. The facade provides
support for forwarding requests to the appropriate services. It uses the Transaction
Manager for ensuring consistency. The Transaction Manager is a JINI standard
component for handling transactions in a distributed environment.

The Byte Store maps to the flat file store of the Coulouris model. It provides
functionality for creating and retrieving file data. The Byte Store does not provide file
attribute storage, which is different from the Coulouris model. It does, however, provide
support for retrieving attributes that are derived from the file data. Such attributes include
file size and checksums. These can be used to verify the file contents. The Byte Store
provides fast access to the files stored on the provider's host. Files are usualy stored
encrypted, but can be unencrypted for performance reasons

The M etadata Store maps to the directory service in the Coulouris model.

It provides functionality to create, list, and traverse directories. It also provides
functionality to retrieve the file data location. Unlike the directory service, the Metadata
Storeis also responsible for file metadata. File metadatais all the information that is
either included in the actua file data or that can be derived from the file data, such asfile
name, creation date, file type, type of encryption, and others. As a matter of fact, thefile
storage location, the file name, and even the directory afile isin are nothing different
than just three file attributes. This allows all these attributes to be handled in a standard
way. Multiple versions of one file may exist in the database for recovery purpose.

The Byte Replicator and other optimizer services provide a component that is
not yet present in Coulouris model. They provide support for autonomic computing. In a
classical data storage solution, an administrator has to manually move and distribute files
among different servers. In SILENUS, thisis done by optimizer services. These services
will analyze the current network condition and make decisions on where to store files,
where to keep replicas, and even when to startup and shutdown services. Each optimizer
service is a separate component, allowing an administrator to chose exactly which kinds

69

and how many optimizer services to run on the network. One example of these services
isthe ByteReplicator service. It will make sure that uploaded files are replicated among
different byte store nodes to provide redundancy. Optimizer services can request log
information from the storage providers, and can automatically initiate replication and
migration. It can detect usage patterns and make sure that the files are available to the
user. It can asodetect non-responding systems and automatically replicates al files that
were stored on it. The Replicator also ensures that all storage servers have the latest
version of thefiles.

After this overview over the services and their interactions, the individual services
can now be looked at in more detail.

Components

Service user interface

Human-Computer 5]

SFS
ServiceUl

Human SorcerFileStore

Figure 4.5. Component diagram for the user interface

To work with the file system, users need an interface. None of the compatibility
interfaces can provide access to all of SILENUS capabilities. Therefore and additional
user interfaceis provided.

The user interface is dynamically downloaded when needed. Unlike traditional
systems that require installation on a client computer, SILENUS user interface is
dynamic. The user needs to have a service browser installed. This service browser can
detect services running in the network. It can then download and display these provided
user interfaces. Thereis no actual configuration needed on the client computer.

70

WebDAV adapter

2]
O—— WebDav Adapter

WebDAV SorcerFileStore

Figure 4.6. Component diagram for the WebDAV adapter

The WebDAYV adapter provides the connection from existing applications and
file systemsto the SILENUS file storage system, as shown in Figure 4.7, “The WebDAV
adapter”.

&
_5 < JAVA

Finder DAVExplorer

I I
9 = .

¥ L SORCER= g

Cadaver
Adapter - E

A

DAVfs

/
e

WebFolders

Figure 4.7. The WebDAV adapter

The WebDAYV adapter uses Java Servlet technology to handle requests instead of
rewriting complete new server software. WebDAV is based on HTTP, as explained in the
section called “WebDAV”. Therefore, existing application servers that handle HTTP can
be reused to provide aWebDAV server. One of these technologiesis Java Servlets, as
explained in the section called “Web-based access to file storage”. The Servlet standard
provides functionality for handling HT TP requests with the HttpServlet interface. It is
very easy to add the additional functionality required for WebDAV.

71

Incoming WebDAYV requests will have to be mapped to the appropriate file
store requests. Most requests are straightforward: GET and PUT will be implemented
using the upload and download functions. PROPFIND uses the request node info, and
PROPPATCH will set node info. LOCK requests can be ignored, but need to be handled
internally to provide consistency.

The implementation and details of the WebDAV adapter is a pending master
thesis topic for Fajin Wang.

NFS adapter
The NFS adapter provides a mapping from the NFS file system protocol to the

SILENUSfile storage. The NFSfile system protocol is most widely available on UNIX
client hosts. Although many newer UNIX systems provide support for WebDAV, not
every older system has support for it. These systems, however, can access the NFS
protocol. Providing support for NFS and WebDAV allows a broad number of clients to
connect.

The NFS protocol is based on remote procedure calls (RPC). In an RPC the client
sends a UDP packet to the server. This packet contains a program number, a procedure
number, and data. The server will dispatch the appropriate program and procedure, and
return areply packet. The NFS protocol is specified in [1] and [2].

The functionality of the NFS protocol includes file system statistics, directory
handling, attribute handling, and file read and write operations. The file system statistic
functions provide a count of used and available block. The directory handling allows
listing, creating, and deleting directories. File attributes can be read and set in with the
common UNIX permissions. File read and write allows reading and writing of data
blocks.

The mapping of most functions to the SILENUS system is straightforward.
Directory handling and attribute handling can be directly mapped to reading and setting
information in the metadata store.

NFS handles use 256 bits while SILENUS UUIDs have a variable bit length.
They must therefore be mapped into the handle range of NFS. A special mapping table
keeps arelation between NFS handle ids and SILENUS UUIDs. The mapping itself

72

isvolatile. Should the mapping information be lost a "stale NFS handle" error will
be created. NFS clients can recover from this error by rebrowsing the list of files and
directories.

The file system statistics as such do not exist in the SILENUS system. NFS has
support for used, available, and free blocks. At the moment these are faked using dummy
values. A new service could be added that collects these statistics and provides a better
estimate.

Mapping the read and write functions is more complex. NFS supports
functionality for randomly reading and writing blocks. Thisis due to the fact that NFS
calls are supposed to be stateless and idempotent: If the result or request for aread or
write operation is lost this operation may just be sent again. SILENUS, however, supports
file reading and writing through byte channels. The NFS adapter therefore has to keep the
state of the clients current read or write function. Fortunately, most file reads and writes
are not in random order but sequential. The NFS adapter keeps lists of open channels for
the last read and write operations. If the samefileisread or written again, the old byte
sequence accessor is used to continue reading or writing the data. I1f no operation occurs
in agiven time, the channel is closed.

File store

Silenus Facade £ |

SorcerByteStore
SFS FS
Provider[| Impl
SorcerFileStore ;
r SorcerMetadataStore

TransactionManager

Figure 4.8. Component diagram for the SILENUS facade

The SORCER File Store interface provides afacade to the SILENUS network for
clients that want to use the system. Since the metadata and actual file contents are stored
in different services, there is need to coordinate between these two services. To make use
of the file system easier this functionality is combined in the SILENUS facade with the
File Store interface.

73

Most of the file store functionality is very straightforward and just consists of
forwarding areguest to the appropriate service. Actions like retrieving file metadata or
setting file metadata can be directly forwarded to a metadata store. In this case, the extra
step of going through the facade can be skipped: These functions are implemented as a
smart proxy that will be downloaded to the client. The smart proxy can talk directly to the
metadata store, thus reducing overhead.

File download has to be coordinated between two services: The file metadata has
to be retrieved from the metadata store. This metadata contains information about the
byte store that carries the file contents. A connection has to be made with that particular
byte store.

File upload requires the use of transactional semantics. When afileisto be
uploaded, two things have to be created: A new node in a metadata store, and the file data
has to be uploaded to a byte store. To save time both requests can be started in parallel.
However, it is very important that, should one of them fail, the other one be cancelled.
Figure 4.9, “File upload transactional semantics’ shows this transactional semantics.

74

File Upload Request

create Transaction

Create ByteSequence
in ByteStore

Send Metadata
to MetadataStore

Upload File
to ByteStore

[success]

[success]

[failure] [failure]

abort] [abort ’ [commit]
:: [at least one failed]

[both commit]

commit

make Metadata make File permanent undo Metadata delete file
permanent

Figure 4.9. File upload transactional semantics

To support the transactions a separate transaction service is needed. Fortunately,
Jini already provides a standard for the Transaction Manager interface. It also provides
areference implementation, called Mahalo, which implements this interface. The

SILENUS facade can use either this or any other service that provides transactions to
ensure that both operations succeed.

75

M etadata store

MetadataStore =l

SMS
Provider
SorcerMetadataStore o TransactionParticipant

RemoteEventListener

Figure 4.10. Component diagram for the metadata store

The metadata store provides attributes for the files stored in the file system. The
analogy in atraditional storage system isthe file system. The metadata information
creates the well-known hierarchical structure. Filesin the Metadata store are identified by
UUIDs. The metadata provides mapping from and to file names.

The file metadatais stored in key-value pairs for each file. The key describes the
kind of attribute (e.g. file name, creation date), where as the value describes the value of
the attribute.

There are two types of file attributes. Basic attributes are of type string or are
easily represented in string form. Extended attributes can be any Java object. This
distinction is necessary when retrieving file attributes. Instead of having to choose alist
of attributes, a client can choose to get either just the basic attributes or all attributes. This
makes |ook-ups for basic attributes fast, but does not limit the attribute types.

The two attributes parent and mime type are used to create the well-known
hierarchical file system structure. Every node except for the root directory has exactly
one parent node. The mime type describes the type of thefile. A special mimetypeis
used for directories and links.

Metadata stores are synchronized while connected. All metadata stores contain
the same information. Should a metadata store be disconnected while its information
changes, it will be resynchronized when it is connected back to the other metadata stores.

The metadata store meta information is needed for metadata store
synchronization. The metadata store needs to keep track of which file versionsit has and
when the last synchronization has occurred.

76

Asininternal database, an embedded database is chosen. Using an embedded
database makes installation much easier; it does not require the installation of external
database software. The database access itself is done using the data access object pattern
to extensibility and support for other databases if needed. A high-performance computing
lab, for example, could set up commercia database software to increase performance.

Byte store

ByteStore =
O [] SBS BS
Provider | | Impl {] C
SorcerByteStore o TransactionParticipant

ByteChannellnterface

Figure 4.11. Component diagram for the byte store

The byte store service stores the actual file data. In the analogy of hardware, this
would be the actua hard drive.

The ID of the byte store and an entry ID in the byte store identify filesin abyte
store uniquely. These ID numbers never change. This makes the file storage independent
from file metadata such as the file name. The byte store services provide nothing but
support for file storage. The advantage is that this service can be then optimized for
performance. Adam Turner is currently working on his master thesis investigating
potential performance optimization using a BitTorrent like file distribution.

Unlike the metadata stores, the byte stores are not synchronized. File datais much
larger than file metadata. Would the file data be replicated on every node the storage
capacity would be filled very quickly. It isthe job of the optimizer servicesto providefile
datareplication.

77

Optimizer

= C
07 Optimizer SorcerByteStore
RemoteEventListener 4<

SorcerMetadataStore

Figure 4.12. Component diagram for the optimizer

The optimizer services keep the network in good shape. There can be many
different optimizer services. Each service could provide different optimizations.

One example service is the ByteReplicator optimizer service. Thisserviceis
triggered when anew file or anew version of afile is uploaded to the file system. It will
then look for another byte store that has enough storage space. It tells the other byte store
to replicate the file. After thefileisreplicated, it will update the metadata stores to have
the new location information. This ensures reliability by providing multiple copies. Not
only new files can trigger replication. If a byte store service becomes unavailable, al files
that where stored on that services are potential candidates for replication: They may now
exist in the network only once, not providing reliability. In this case, the ByteReplicator
has to trigger another replication.

Another type of optimizer servicesis an autonomic provisioner. When thefile
system becomes full, the provisioner may start more byte store services. When the file
system is sparsely used, these byte store services may be shut down. When the metadata
stores and the SILENUS facade get to many requests, the provisioner may start provision
new services in the network. When the number of requests goes down, the provisioner
may stop these services.

Component Use Cases
Based on the SILENUS architectural model we will examine three typical use
casesin file storage systems. These cases are browsing for files, uploading afile, and
downloading afile. For file upload there are two different use cases, one for push and
one for pull operation. For downloading we will ook at the caching and non-caching use
cases.

78

<< component >> L(<< component >>
O Daphne | @ Byzantium
SorcerByteStore
WebDAV
<< read-only >> [<< component >>
\/C) Mahalo
&
<< component >> << component >> TransactionManager
O ServiceUl \/C) Silenus
—\
ul SorcerFileStore << component >>
(r Midas I
© L
SorcerMetadataStore
<< component >> << component >>
JXTA Adapter || (7 ByteReplicator
O ©
CMS SorcerOptimizer

Figure 4.13. SILENUS architectural model overview

There is also adirect connection between the client adapters and the byte store
that is not shown in the overview. This connection is used for the actual file data upload
and download. There are two different cases. One for passive clients, and one for an
active client that has its own service process.

In the case of a passive client adapter, the byte store offersit servicesto the client.
All connections have to beinitiated from the client. Files have to be uploaded with the
push method.

<< component >> @ < component >>

Daphne Byzantium

WritableByteChannel
©

ReadableBvteChannel

Figure 4.14. Direct connection with a passive client

In the case of an active client adapter a connection can be initiated from the byte
store service. This method requires the client to run its own service process. If thisis
not possible, it can fail back to the passive method. An active client could be the user
interface or another byte store.

79

<< component >> @ < component >>
ServiceUl ReadableByteChannel Byzantium
©

ReadableBvteChannel

Figure 4.15. Direct connection with an active client

Given this modd the use cases can now be described.

Browse files use case

The browse files use case is very straightforward. The request for browsing is
forwarded to the facade, which will then forward it to a metadata store. The metadata
store will return the attributes for a given nodes. The list of children is one of the
attributes.

—» 1 :list director : .
-User y -ServiceUl —» 2 : expandNode — 3 : expandNode

:Silenus :MetadataStore

<46 : directory listing <5 : attributes <4 :attributes

Figure 4.16. Browse Files

Push upload file use case

To facilitate the file upload, the file data has to be split up into file content and
file metadata. It isthe SILENUS facade's responsibility to coordinate this split up and to
ensure that both actions succeed. The byte store returns a writable byte sequence. This
byte sequence is passed back to the client, which can then use this sequence to upload the
file.

80

—>1:uploadFile - —»8a : uploadFileData
:User :ServiceUl :ByteStore

4, 2 : uploadFile

W 7a:ByteSequenceAccessor A 4 :createByteSequence

:Silenus * 7c :prepare + 9a : prepared

. * 10a : commit
"4 3:createTransaction

"\ 6 : commit
K 5:createNode

:MetadataStore :TransactionManager
< 7b :prepare

< 10b : commit

Figure 4.17. File upload with push

Pull upload file use case

The pull file upload is identical to the push file, but here the byte store isthe
active component pulling its data from the client. To allow a pull file upload the client
module has to run its own service component. The byte store can then pull the byte data
from the client. This moves the management of the actual file transfer to the byte store.
Aswith the push file upload, the transaction manager is used to ensure that this operation
completes successfully.

—>1 :uploadFile <5a: i
:User :ServiceUl 5a: downloadFileData :ByteStore

4, 2 :uploadFile

71 4 : createByteSequence * 7c :prepare + 8a: prepared

:Silenus

* 9a : commit

4 3:createTransaction

\\ 6b : commit
K 5b :createNode

:MetadataStore :TransactionManager

<« 7b :prepare

< 9b : commit

Figure 4.18. File upload with pull

81

Non-caching download file use case

To download afile, the SILENUS facade first asks a metadata store for the files
metadata, which includesits location. The facade can then decide on a byte store. It
will ask the byte store to return a byte sequence. A byte sequence is a sSmart proxy that
contains the information on how to talk back to the byte store. It will return this byte
sequence to the client module. The client module can then use this byte sequence to
download the actual file contents.

—# 1 :download . X
:User :ServiceUl —*2 :download :Silenus —*3:expandNode : Store
gQ <7 :bytesequence <-4 :metainfo

— 5 : getBytesequence

<6 : bytesequence

—» 8 :download :ByteStore

Figure 4.19. Downloading afile

Caching download file use case

To facilitate caching the SILENUS facade needs to know which byte storeis
considered "local" to the client host. Thisis usually a byte store on the same host, but
may also just be a byte store in the local network. There may even be multiple local byte
stores. If afileisavailable at alocal location, thislocation is used and the interaction is
the same as in the non-caching case. If the fileis not available locally, the facade initiates
atransfer between the remote byte store and the local byte store. It will return the handle
to the local byte store to the client module. The client module can then download the
content from the local byte store at the same time the local byte store downloads the
content from the remote byte store.

— 1 :download 2 nl .
:User :ServiceUl download :Silenus >3 :download : dataStore
gQ <—9b : bytesequence ‘ [<-4 :metainfo

<7 :downloadFrom —» 5 : getBytesequene

¥ 10b : download

—>8:bytesequence <6 : bytesequence

—9a : download
:ByteStore ‘ :ByteStore

Figure 4.20. Downloading afile with caching

82

Use cases for Service-oriented programs

Service oriented programs can use the SILENSU file storage in asimilar way the
GUI and WebDAYV client modules use the SILENUS file storage. When uploading or
downloading afile, they will connect to the SILENUS facade to retrieve and store their

data.

: : —» 8 : preprocess
See diagrams See diagrams
for upload for download —»9:execute Task
and download and upload —» 10 : postprocess
1 1
1 1
1 1
— 1 : uploadFile : i <7 :downloadFile
:User P :ServiceUl %2 :uploadFile :Silenus :Worker
—» 12 : downloadFile —#13 : downloadFile <11 : uploadFile
+ 3 : create and submit Job
—% 4 : submit Job —5:add Tasks i
:JobberUl :Jobber :ExertionSpace <6 :pickup Task

Figure 4.21. Use case for SO Task using file store

The retrieval and storage of file data is the exact same mechanism as from the
other client modules. The interaction is the same, just with the ServiceUl replaced by the
worker Task.

—»1: . :
“Worker 1 : download :Silenus — 2 :expandNode :MetadataStore
<6 : bytesequence <3 :metainfo
—» 4 : getBytesequence
<5 : bytesequence
—» 7 :download ‘BvteStore

Figure 4.22. Worker service download case

83

- —» 7a : uploadFileData
:ServiceUl :ByteStore
4 1 :uploadFile
W 6a : ByteSequenceAccessor A 3:createByteSequence
:Silenus + 6¢ : prepare + 8a: prepared
. + 9a :commit
4 2 : createTransaction
\ 5 : commit
X 4 :createNode
:MetadataStore

:TransactionManager

<—6b : prepare

<4-9b :commit

Figure 4.23. Worker service file upload case

If the processing for the job is done in multiple tasks, then each task has to upload
and retrieve the file from the file storage system

—» 8 :preprocess

‘Worker

A& 7 :download File &9 :upload file

—» 12 :execute

—» 1 :uploadFile : i . |
User P! ServiceUl —» 2 :uploadFile Silenus <11 :download File ‘Worker —
: i <13 i
—» 18 :download File 519 : download File 13 :upload File
W 15 :download file N\ _Y~17 :upload File

* 3 :create and submit job —» 16 : postprocess

—» 4 : submit job —»5:add Tasks -
:JobberUl :Jobber ‘ExertionSpace | 414 :pickup Task :Worker

| | <410 : pickup Task

<46 : pickup Task

Figure 4.24. Use case for several tasks using SO file store

The Service context for the tasks will contain alink to the files used for the task.

It will contain alink for the input file and alink for the output file for each task. These
links are stored as SILENUS URIs.

1. The user uploads afileinto SILENUS at /somePath/someData

2. Thejobiscreated. In its context the key "InputData’ is set to
"sorcer://FileStore/somePath/someData’

3. The preprocessor reads the field, downloads the data, and creates a new file
"someData.preprocessed”. In the context it sets the key "PreprocessedData’ to
"sorcer://FileStore/somePath/someData.preprocessed”

4. The worker service reads the field, downloads the preprocessed data, and
creates a new file "someData.processed”. It sets the key "ProcessedData’ to
"sorcer://FileStore/somePath/someData.processed".

5. The post process task reads the field, downloads the processed data. It then
creates a new file "someData.postprocesssed”. It sets the key "OutputData’ to
"sorcer://FileStore/somePath/someData.postprocessed”.

Example 4.1. Sample usage of SILENUS URIs

Instead of passing SORCER URIs with filenames between the internal
services, the services may pass the file store UUIDs between the services, thus
saving the next service the lookup process. They would then use URIs like
"sorcer://FileStore?uuid=1234-5678-90AB-CDEF". This can be done between
the preprocessor task and the process task, and between the process task and the
postprocessor task. It cannot be done for the input file name and the output file name
where the result is returned to a human user, who will most likely prefer areadable URI.

File system attributes
We will look at several file system attributes and describe how the SILENUS
model handles them. For each of these attributes advantages and disadvantages are
identified.

Transparency
The I SO defines seven levels of transparencies in distributed applications. Each

transparency is analyzed and looked at in the context of SILENUS.

The first transparency is location transparency: It should not matter where afileis
actually stored, it should always be accessible. In SILENUS, afileis accessible aslong
as at least one byte store that has the file data and one metadata store are available. The

85

client module will provide access to the file just like local files, thus providing location
transparency. The drawback of providing location transparency is slower file access.
Finding the location of afile requires extra overhead. Retrieving the file content from a
remote host is always slower than retrieving it from the local host. If the file content is
stored at aremote location, there may alow bandwidth between the local host and the
host storing the file data. Local caching can lessen this disadvantage.

The second transparency is access transparency. Files should be accessible
through existing software. This transparency is provided through the client modules.
Each client modul e adapts the file system to an existing environment. These adapters
require extra overhead.

Replication transparency requires that it should not matter on which filereplicaa
user works. Thisis provided by SILENUS update mechanism, which is explained in the
section called “File Replication™.

Failure transparency states that the system should still work in the expected way
in case of afailure. Failure transparency in SILENUS is acquired by file replication and
by expecting disconnection. Both solutions lead to more overheads in the system. File
replication requires more storage space. Expecting disconnection may lead to temporary
inconsistencies.

Reading the same file from multiple nodes is called read concurrency
transparency. SILENUS provides this through replication and non-exclusiveness of file
reading. Multiple requestors may read the same file at the same time. This may create a
bottleneck if afileisavailable on only one host. Thisis avoided through local caching,
which makes a downloaded file immediately available to other hosts.

Write concurrency transparency in SILENUS is provided through its unique
versioning mechanism. It is explained in the section called “Concurrent File Updates”.

Migration transparency requires that the actual file data can be moved from one
to anther host without interrupting work. SILENUS provides standard mechanisms for
adding and removing file replicas. The disadvantage is that clients may not immediately
know about the adding or removal of areplica, thus either not taking advantage of a
local copy, or trying to access areplicathat is no longer available. In this case the failure
handing mechanisms of SILENUS have to catch it.

86

Concurrent File Updates

SILENUS supports concurrent file updates through its versioning mechanism. If
afileisupdated, a new version of that fileis created. The old version is not touched. If
two clients try to update the same file at the same time a conflict occurs. Conflicts are
solved through virtual duplication. Thisis explained in more detail in the section called
“Conflict resolution through virtual duplication”.

File Replication

Filereplication in SILENUS is supported through the use of multiple byte store
services. Whenever afileisrequested it may be cached in alocal byte store. Replicas of a
file may be available in as many locations as needed. To automatically manage thesefile
replicas two optimizer services are used.

The first one of these optimizer servicesis the Byte Replicator service. It ensures
that at least two copies of afile arein the network at the same time. This serviceis
triggered when anew file or anew version of afile is uploaded to the file system. It will
then look for another byte store that has enough storage space. It tells the other byte store
to replicate the file. After thefileisreplicated, it will update the metadata stores to have
the new location information. This ensures reliability by providing multiple copies. Not
only new files can trigger replication. If a byte store service becomes unavailable, al files
that where stored on that services are potential candidates for replication: They may now
exist in the network only once, not providing reliability. In this case, the Byte Replicator
has to trigger another replication. If there are not enough byte stores available, one may
be auto provisioned as explained in the section called “ Optimizer”.

The second optimizer service, which is not shown in the architectural overview, is
areplicadeletion service. It will check the number of replicas of afile from timeto time.
If afile has ahigh number of replicas, it will free space by deleting some of the replicas.
This ensures that more space is available if needed. It can use access data provided by the
byte stores to decide which replicas to delete.

Providing multiple file replicas is mandatory for performance and reliability.

Files that are replicated to the local host can be accessed much faster than files on remote
hosts. To provide reliability afile hasto exist in the network multiple times. It can then
be downloaded from alternate sources, should one of the providers become unavailable.

87

On the downside it uses more storage space. Requiring that every file existsin the
network twice uses up twice as much storage space. This requirement may have to be
relaxed for large files on reliable hosts.

Operating system heterogeneity

To look at operating system heterogeneity two aspects have to be looked at: The
potential heterogeneity for client systems and for the hosts running the services.

The use of small client adapters makes the file storage independent from the
actual operating system and architecture used on the client. If the client system supports
astandard protocol, such as WebDAV or NFS, it can be used. The use of small client
adapters makes it easy to add another one should a new client system be devel oped.

The services may also run on various different host types. Supporting each of
them with a custom solution is a major undertaking. A feasable solution isusing a virtual
machine. An application would have to be written for that virtual machine. Only the
virtual machine has to be ported to different platforms. The programs are compiled into
intermediate byte code language. This byte code can be reused on any of these virtual
machines. This makes code mobility possible.

Using avirtual machine always has a performance impact. Running a virtual
machine takes up processor time. Several solutions exist to prevent the performance
impact, such as the Hotspot compiler in the Java Virtual Machine. Code that is
repeatedly used is adaptively compiled to native machine code. This alows for improved
performance. Recent evidence even suggests that the runtime optimization is better than
the compile time optimization and Java program run faster than equivalent machine
native programs| 68].

Fault tolerance

In the SILENUS system, fault tolerance is provided by local replication and
dynamic discovery. Each metadata store keeps a full copy of the file metadata. Should
a system become disconnected, thislocal copy will be used. Each byte store on alocal
host caches the most recently accessed files as described in the section called “ Caching
download file use case”. These fileswill be used in the case of disconnection.

88

Services will be dynamically discovered whenever they are needed. In traditional
file storage solutions addresses of servers are manually configured. If aserver is
unavailable, the request will fail. The dynamic nature of service-to-service makes this
unnecessary. Aslong asthereis at least one service of thistype available in the network,
this service can be discovered and used.

The dynamic discovery also provides for failover. Should a service not respond to
areguest in a certain time, the request can be sent to a different service. This service will
then process the request.

Consistency
There are two types of consistency: File metadata consistency and file content

consistency. File metadata consistency is provided with the mechanisms described in the
section called “ Concurrent File Updates’. File content consistency is provided through
the use of versioning.

To ensure file contents are not corrupted derived file attributes such as file length
and checksums are stored in the metadata store. A client module can then verify the
downloaded file contents against these given attributes. A file can be considered corrupt
if the file size or a checksum does not match the given value.

Efficiency
For acomplete analysis of SILENUS efficiency please see the section called
“Model Performance Analysis’.

| dempotency
|dempotence is the quality of something that has the same effect if used multiple

timesasit doesif used only once. Thisis usually an issue with asynchronous network
messaging without areply. A message could be sent multiple timesto increase the
probability that at |east one of the messages arrives. A server has to ensure that even
though it receives the message multiple timesit is only executed once.

The SILENUS system does not show this problem because every method call has
areturn value. Thisreturn value is either data returned from the call or an exceptionin
case of any network failure. The return value can be examined, and the message resent

89

to adifferent server. Should any error occur during the method call, the transaction at
the service will be aborted and the state of the service will be reset to the previous state
through arollback operation.

In the rare case that an error occurs during the return from the function call this
behavior will still have idempotency issues. The service will behave asif the call was
successful, while the requestor will see the call as failed and resend the message. This
repeated call may be sucessfull or not: If the original request made a change that is
unrepeatable, such as deleting afile, the second call will result in an error. If the original
request was repeatable, such as setting attributes to a certain value, then the action will
just be repeated. As of right now thisissue is unsolved. A potential solution would be to
use message sequence numbers to detect duplicate messages. Thiswill have to be further
investigated.

Security, Access Control, Authentication
The security concept for SILENUS is described in the section called “ Security”.

Managing change
One of the challengesin any distributed file system is handling changes. Changes
can occur on two levels: File content may be changed or file metadata may be changed.

Change in file metadata
Changesin file metadata occur every time the file content stays the same, but new
information for the file is available. This does not only refer to the classical file metadata,
such asfile owner, or file name, but to all information stored in the metadata store. It
includes information such as the directory afileison or the location of the file contents.
Each change in file metadata triggers an event that needs to be sent to the
other metadata stores. Since the metadata stores should contain the same information,
it is necessary to synchronize them. An overview on how the metadata stores keep
synchronized is given in the section called “ Metadata store synchronization”.

90

mds1 :MetadataStore

~7 3a:sync

<2 :apply

—>3b 1SYNC | mds2 :MetadataStore

localMDS :MetadataStore

—»1:change
:ClientModule

mds3 :MetadataStore

Figure 4.25. A metadata change

Change in file content

Changesin file content are handled through auto versioning. Every time afile
is saved, anew version of that fileis created. The old versions will stay intact. Instead
of an actual change in file data, the change operation now becomes two operations: A
change in file metadata, and the upload of new file content. The change in file metadata
is handled with the same metadata synchronization process as for the regular metadata
change. The same upload process as for a new file handles the change in file data.

,,,,,,,, ByteStore now has
v1 and v2 of the file

:ByteStore

¥ 2 :download (v1)
¥ 4 :upload(v2)

A 1 :getlocation

:ClientModule

— 3 : modify

A 5 :newVersion

:MetadataStore

MetadataStore has:
v2.location: bs/XXX
vl.location: bs/YYY

Figure 4.26. Change of file content

Partially modified files will have to be handled differently. If only asmall part
of alargefile changes, it isinconvenient to create afull new file version. In this case,
the change will now become three events: First, the existing version of the file on
the byte store is pseudo-del eted. The location information will be removed from the
metadata store, but the file content will stay in the byte store. Thiswill ensure that no
other processes accesses the file at the same time. After that, the file contents can be
modified. When the modification is done, the new file version will be created pointing to
the modified file.

91

Auto versioning may lead to many versions. If afileis saved regularly, auto
versioning can create multiple and overly many backup copies. One example for this
is the auto save feature in common text-processing applications: It will automatically
save an open document every 5 minutes. In a4-hour work session this amountsto 72
versions. In this caseit is probably not worth keeping all versions. Traditional backup
systems keep one version per day. An optimizer service needs to be added which
supports automatic removal of old versions. One potential algorithm would check the
time between versions. A version that is superseded by another version after a short
interval is probably less worth keeping than aversion that is replaced after alonger time
span. Versions that are too old may also be deleted by this version garbage collector
service. Another approach would be to use user-defined attributes, such as "frozen
version” or "final version". These versions could be kept for a certain timespan, while
"work versions' of the same file may safely be deleted. Thistopic is open for future
research. Some possible approaches are shown in [44] and [45].

M etadata store synchronization
As shown in the section called “Change in file metadata”, the metadata stores are
synchronized. When a metadata store receives a change request, it applies that request to
its own store and sends out change information to all other available metadata stores. In
an ideal environment with all metadata stores available and no events happening at the
same time this would lead to consistency. Unfortunately these two assumptions are not
true.

An agorithm hasto be found that provides consistency across multiple metadata
stores. First, consistency has to be defined. Then, an order of events has to be established
to know which events are newer and may override older events. Once thisis done,
an algorithm can use that information to provide synchronization that |eads to more
consistency.

Consistency
Consistency needs to be defined before the term can be used. Three types of

consistency are introduced: Global consistency, group consistency, and local consistency.

92

Global consistency requires that all metadata stores have the exact same
informational state. If one of the metadata stores receives a change request and appliesit,
the system will become globally inconsistent. After all metadata stores are updated, the
system will be global consistent again.

Group consistency requires all metadata stores that are currently reachable from
one metadata store to have the same informational state. If one of the metadata stores
receives a change request and appliesit, the system will be group inconsistent. After
it sends an update request to all available metadata stores, the system will be group
consistent.

Local consistency applies to asingle metadata store. If a change request is made
and applied, the metadata store is already locally consistent. That change should be
persistent in the metadata store until changed again on either the same metadata store or
from another metadata store that has the same state.

Consistency reguirements

After defining consistencies, it can be looked at what types of consistencies are
desirable and possible.

Global consistency is the most desirable but impossible with the given
requirements. The system should support disconnected operation. Aslong as at least one
node is disconnected from the rest of the nodes, it isimpossible for any update packets
to reach that node. Therefore the disconnected nodes will never be able to have the same
state until they are reconnected.

Group consistency is very desirable and achievable. As seen in the definition, any
metadata store can send its update packets to all connected metadata stores. The updates
can then be applied to these other metadata stores. There are two problems that can occur.
The first one is areconnected metadata stores. Theses will not have received all update
packets that where sent before. They need to detect this time lapse and synchronize
accordingly. If two conflicting changes where made, they need to be resolved. The
second case happens if two conflicting changes are made to two metadata stores that are
connected. Each metadata store will try to apply the change and then send update packets
to the other stores. A conflict occurs which needs to be resolved. This second caseis just
aspecial version of thefirst case. It therefore does not need special handling.

93

Whenever an update packet from another metadata store is applied, it must be
ensured that the local consistency on the metadata store is kept. Update packets from
other metadata stores can destroy local consistency when they contain changes from an
older state. It must therefore be ensured that a conflicting update packet is only applied if
the remote metadata store knew about the current state of the local metadata store.

Measure of consistency

We can introduce a measure of consistency. We will assume that we have a
number N of metadata stores. Each metadata store will know about a number E of
metadata change events. For each individual metadata store we define its consistency as:

This measurement will always have avalue in therange [0..1]. It will be O for a
new metadata store. If the metadata store if completely synchronized (global consistent)
then it will be 1.

To get ameasure of consistency for the whole system we need to sum up the
known events in every metadata store:

2 Emds

ol NxE
total

This measurement will always have avauein therange]0..1] aslongasN >0
and E> 0.

For both measurements, a higher value, as closeto 1 aspossible is desirable. It
is therefore mandatory optimize the system to reach avalue as closest to 1 as possible.
Global consistency is achieved when Cigig = 1.

To reach global consistency, each node has to know about all events that have
happened in the system. It is therfore necesarry to communicate the events to other nodes,
and apply these events locally.

94

In the SILENUS model, group consistency is achieved by sending eventsto all
connected metadata stores. WWhenever an event occurs, it is sent to all metadata stores that
can be reached. When a node is disconnected, it will not receive any events. It therefore
has to be ensures that it receives the events onces it is connected with the other nodes

again.

Order of events

In adistributed system, the state of the system depends on the time that this
system wasin this state. It is therefore required to have anotion of time. Time has do
define an order of events. This order can then be used to recreate a change log or to
decide which eventsto apply. First, existing algorithms for distributed order of events are
investigated, and then a new algorithm is proposed.

To provide an order of events, anotion of time t, where t. defines the time for an

event e, must provide the following properties:
* t must be strictly monotonic increasing for every event.
te1 < te iff €1 happened before €2

te1 > tep iff €1 happened after e2
ter = tep iff €1 and €2 are the same event on the same machine

te1 || tep Iff €1 and €2 happen at the same time on different machines.

The first guess at providing an order of eventsisto use the real time clock.
Every node would get the time from a global time server. It would then be easy to
find out which events happened when and which events should override older events.
Unfortunately, this would require all nodes to keep exact time and reconnect to the global
time server often enough. The GPS system is an example of a distributed system that
uses very exact time. Unfortunately, such an exact time is not available in real world
applications. Synchronization with aglobal time service isimpossible for disconnected
hosts. The computer clock can give an approximation for the time, but it is not always
exact. The local clock may be set to a faulty time on purpose. Also, real time does not
provide a notion of events happening in parallel. [70, 41]

95

Instead of using aglobal absolute clock alogical clock isused. A logical clock is
amonotonically incrementing software counter. It will start out at time zero. It is required
that thereis at least one clock tick between two events, so t isincreased after every event.
Thistimeis strictly monotonic and allows comparison. If all events are time stamped, it
becomes possible to reconstruct the order in which events occurred. This works very well
for asingle system, but shows limitations when applied to a distributed system. [42]

Timestamps work fine when all network messages arrive before new messages
are sent of. Figure 4.27, “ An event diagram using logical clocks” shows an example for
this type of messaging. The individual elements on one process can be ordered. Every
process can detect in which order events where generated.

ell el2 el3
P1)
e2l
P2 \
P3/ ® ® L 3

e3l e32 e33 e3d
» global time

Figure 4.27. An event diagram using logical clocks

This system shows its limitations when network messages are lost. This may
have happened due to one service being disconnected. Events that originated in different
processes cannot be ordered. Figure 4.28, “ An equivalent event diagram” shows an event
diagram that is equivalent to the one in Figure 4.27, “ An event diagram using logical
clocks’. However, the events now happened at different times. Without global knowledge
thisisimpossible to detect from within the processes.

ell iel2 el3

Pl —K o
e21¥4e22 23 e24 'e25
P, — 0@ \ \

P3
e3l .e32 e33 e34

Figure 4.28. An equivalent event diagram

96

To order eventsin adistributed system, atime stamp on the local processis not
enough. Every event needs to be time stamped with the global time at every system. This
leads to vector clock timestamps. In vector time, every system keeps its own counter.

A vector clock V contains the logical clock for every connected system. Figure 4.29,
“Global vector time” shows an example of events tagged with vector time.

Pl

P2 ; .\
o

: ‘ ‘ -

T TN

OO0 = 0

Figure 4.29. Global vector time

P4

0
2
1
0

Unfortunately, a system with fully working vector clocks would need areliable
observer. In atruly distributed system thisisimpossible. Instead, the vector timeis
approximated with the best knowledge of a system. In avector clock system, each node
keeps the knowledge of its own logical clock and the logical clocks of al its peers.
This clock vector is appended to all network messages. Other systems can then use
thisinformation to update their own vector clock and to check if the received message
was current. VVector clocks can be used to provide total ordering of eventsin a system.
Figure 4.30, “Vector time propagation” shows an example of such an ordered system.
[43]

97

O
DD =12

00
[0%6 ()
)00

/0

Figure 4.30. Vector time propagation

(=N S N

The vector clock algorithm is as follows:

« |f an event occurs locally, increment the own clock.

 If an event isreceived, set each clock to the maximum of the clock received and the
known clock. Increment your own clock by one.

Using this algorithm we can now compare vector clocks and define an absolute
ordering of events. We will compare the received time vector V, with the local time
vector V.

* If all components of V, >=V, (but V, !=V)) then the received message is newer than
thelocal state. Receive al events from the remote system and apply them.

* The casethat al components of V, <=V, (but V, !=V)) isnot possible. A metadata
store will increment its own clock before sending out events, therefore at least
the clock component V, which corresponds to the sender must be greater than the
component stored at the receiver side.

* If some components of V, >V, and some components of V, < V| then some events
happened in parallel. In this case, the receiving metadata store needs to retrieve all
events from the sending metadata store and merge the contents.

If amerge occurs there are two possible cases:

98

» None of the events concern the same files. In this case, the received events can be
applied directly.
* If some of the events concern the same files, a conflict occurs. This conflict needs to be
resolved.
The algorithms described in this section are commonly known and verified.
Unfortunately, the traditional vector clock a gorithm shows some problems, which will
now be discussed.

Dual-Clock Time Vectors

The problem with this time vector algorithm is that it does not keep accurate track
of the actual changes, but rather of the messages. According to the original algorithm
the clock isincremented every time an event isreceived. If this time vector is then sent
to athird party, this other host could not distinguish if the time was increased because
anew event occurred or because another event was merged. Figure 4.31, “Vector clock
problem” shows an example.

O
() —())
()

Figure 4.31. Vector clock problem

In this particular example, the first node receives an external event. It increments
its own clock and propagates the event to all other nodes. These nodes apply the change
and increment their own time vector. Another event occurs on the second node. It
increments its time vector and notifies all other node. The first node will just apply the
changes. The third node, however, will detect a conflict.

99

To solve the problem with single-time vector clocks a new dual time vector-clock
systemisintroduced. A local timer counts only events that originated locally, whereas
the global timer counts both local and external events. The time vector now contains
both clocks for al nodes. The local component is used for time comparison, whereas the
global component is used to recreate change data. When comparing these time vectors,
only the local components of the time vector are compared. It will result in one of these
four possibilities:

* If forall n: VI, (n) = VI(n) then V, = V,. Both nodes have the same information. Merge
global components by setting them to the maximum of the current value and the
received value.

 |f foral n: VI, (n) >= VI|(n) and VI, '= VI, then V, > V|. The received message is newer,
all changes may be applied and the components updated by setting every component to
the maximum of the current and received value and increasing the own global clock.

o If foral n: VI,(n) <= VI|(n) and VI, '= VI, then V, < V,. The received message is ol der.
Ignore the events but merge global components by setting them to the maximum of the
current value and the received value

* If thereexistsan m, n: VI,(n) > VI(n) and VI,(m) < VI;(m) then V| || V. Some events
have happened in paralel. A potential conflict has occurred that must be resolved.
After resolving the conflict, set every component to the maximum of the current and
received value and increase the own global clock.

This algorithm shows alower rate of false conflict detection. Figure 4.32,
“Dual-clock time vectors with local and global counter” shows the same events as
Figure 4.31, “Vector clock problem”. Since no actual conflict occurred, none is detected.

100

y

0/0 \ 71
0/0 /> 0/0

0/0 0/0
0/0
0/0
0/0
0/0 171
(0/0) (0/0\ >
0/0 0/1 }

Figure 4.32. Dual-clock time vectors with local and global counter

171 S 11
=1 01 1/2

0/0 0/0

Properties of Dual-Clock Time Vectors

Since the dual-clock time vectors are a new algorithm, we have to prove its
properties. The requirements for time given in the section called “ Order of events’” were:
t must be strictly monotonic increasing for every event.
te1 < tep iff €1 happened before e2.
te1 > tep iff €1 happened after e2.
te1 = teo iff €1 and €2 are the same event on the same machine.

te1 || tep Iff €1 and €2 happen at the same time on different machines.

Each of these required propertiesis now investigated. For each property, local
events and remote events have to be investigated. The dual-clock time vector can without
loss of generality be defined at:

11 /gl
V= lself / gself

l/¢g

n n

101

To provethat t is strictly monotonic increasing it must be shown that V ey > Vg
The algorithm states that in the case of alocal event both the local and global clock of the
current system have to be increased, therefore:

11 /gl 11 /gl
Vnew = Vold + /1| = 1self/gself + /1| = 1self +1 /gself + 1
1n/gn 1n/gn

We can immediately see that forall n: Vlney >= Vlgg and Vpew '= Vag. Therefore
the requirement V ey > Vg 1S Satisfied.

The second case is the case of received remote events. There are four sub cases:
1. V; =V,. Inthis case, no event has happened; V| does not have to increase.
2. V, <V,|. Inthis case, the received event is older; V, does not have to increase.
3. V> V,|. Inthis casg, the received event is newer; V| must increase.
4. V.|| V). Inthis case, events have happened in paralel; V| must increase.

In the sub cases 3 and 4 V gy IS defined as:

max(lold,l ’lr,l) /maX(gold,l ’gr,l)

max| 1 J |/max(g .2
old,self " r,self old,self "“r self

new

vV = maX(V ,V) =
old” r

1Tlax(lold,r ’lr,r) / 1’nax(gold,r ’gr,r)

1nax(lold,n ’lr ,n) / rna‘X(gold,n ’gr ,n)

102

The use of the max function satisfies the condition forall n: Vley >= Vlgg. Vnew
I=Vqq follows directly from the sub case selection, would V ey = Vg then sub case 1
would have been selected. This proves that the dual vector clock algorithm satisfies the
requirement: t must be strictly monotonic increasing for every event.

The next property that must be proven isthat tg; < tep iff €1 happened before e2.
This property isadirect result from t being strictly monotonic increasing for every event.

The properties te; > tep iff €1 happened after e2 and te; = te iff €1 and e2 are the

same event on the same machine also follow directly from the property that t is strictly
monotonic increasing.

The property te || teo iff €1 and €2 happen at the same time on different machines
can be proven as follows. Assuming two nodes N1 and N2 have the same vector V g4t at
some point:

ll/gl
1N1 /gNl

start

1N2 / gN2

l/¢g

n n

After two events happened in parallel on both machines, the time vectors for
nodes N1 and N2 will be:

103

ll/gl ll/gl
1N1+ 1/gN1+ 1 lNl/gNl
V.= : Vo = :
N1 N2
lNZ/gNZ 1N2+ l/gN2+ 1
ln/gn ln/gn

When comparing the two time vectors, V1 (N1) > V2 (N1) and Vg (N2) <
Vn21(N2). Given the definition of parallelism these vectors are detected as Vg1 || Ve

The other direction isto provide that if V1 || VN2 then there must be events on
more than one host. This can be proven by looking at the algorithm: The only time the
own local clock increasesisif an event happened locally. Therefore, if more than one
local clock has changed, there must be events that happened on more than one host.

The dual-clock time vector algorithm still supports all the properties that
where required originally. It can therefore provide areliable order of eventsfor a
synchronization mechanism.

Performance of Dual-Clock Time Vectors

When looking at performance for dual-clock time vectors, the different operations
have to be looked at first. There are three operations that are needed: Comparing time
vectors, increasing time vectors, and merging time vectors.

The easiest case isincreasing atime vector. In the case of alocal event, two
entries in the vector are changed. In the case of an event from the outside, one component
in the vector is changed. The required time is therefore O(1).

Comparing time vectors requires a comparison of every component. The required
time istherefore O(n) where n is the numbers of participating nodes total in the system.
In the case of the SILENUS system, thisis the number of metadata stores.

Merging time vectors requires again a comparison and setting of every single
component. The required time is also O(n).

104

When a host rejoins an existing network, it will discover all other hosts. It will
have to compare its time vector with all hosts on the system. It will only have to merge
the time vector with the first host it encounters asit will have the current time afterwards.
It then hast to increase its own clock. The total time required for synchronization is
therefore O(n)* O(n) + O(n) + O(1) = O(n?).

A SILENUS deployment with 1000 metadata stores could therefore need up
to 10° operations for its synchronization. The operations required for synchronizing
dual-clock time vectors are all ssmple integer operations. An integer operation uses very
few clock cycles. Assuming about 100 clock cycles per operations, which is probably too

high, it would take 10® clock cycles. Current computers running with processor speeds

in the gigahertz range can run 10° clock cycles per second. Synchronization with 1000
nodes would therefore take less than 1/10 of a second on a modern computer.

Conflict avoidance

Even if thereisapotentia conflict, thereis, and in most cases will not be,
an actual conflict. The ordering of events using the dual vector clocks only givesthe
information that two or more events have happened at the same time.

These events must be related to create an actual conflict. In the case of SILENUS
metadata, events are only related if they apply to the same node. Event applying to
different nodes can therefore be applied without problems. Some event may not make
sense together, such as deletion of adirectory, and creation of anew file in the same
directory, but they do not conflict.

The relation can even be specified more exactly on afield basis. If two different
fields on the same node have changed, these can be merged without conflicts. If afile
is renamed on one node, and modified on another, both changes are not in conflict with
each other.

The last-changed-on metadata can never create a conflict. This datais updated
every time any data of the node changes. As such, it would always lead to a conflict.
However, thisdatais only used for conflict resolution. It is therefore not important what
the actual valueis.

105

Conflict resolution through virtual duplication

One possible conflict resolution mechanism is virtual duplication. Virtual
duplication addresses the issue of local consistency and requires no direct user
interaction.

An automatic conflict resolver will require no user interaction. If afileis modified
in multiple places, the system should be able to provide a conflict handling strategy. This
strategy should not require user interaction. In most environments it isimpossible or
impracticable to ask the user which conflicting option to choose. This should be done
automatically.

One issue with automatic conflict management isthat it can break local
consistency. A change may be made to alocal metadata store. Then this metadata store
gets synchronized with another metadata store where a conflict occurs. The users on both
metadata stores expect their action to take precedence over the conflicting action from the
other user.

The Coda distributed file system introduced virtual duplication. It isused in the
code file system to resolve conflicts between two versions of the same file with updated
file content. In SILENUS this method is not applied to file content. It is applied to al
changesin file metadata. Changing the file contents adds a new version and therefore
triggers achange in file metadata. But other changes in file metadata are possible that
may need to be resolved.

Virtual duplication provides afile under three different names: It will append a
. ver si on to the files depending on which store it was modified. It will also provide the
file under its original name, as a soft link pointing to the version that was produced on
this particular host. Figure 4.33, “Virtua duplication example” shows an example.

106

Store A contains: bla.txt (version 1)
Store B contains: bla.txt (version 2)

Stores get disconnected
File bla.txt is modified on store A
File bla.txt is modified on store B

Store A contains: bla.txt (version 2.A)
Store B contains: bla.txt (version 2.B)

Stores get reconnected

Store A shows: bla.A txt (version 2.A)
bl a.B.txt (version 2.B)
bla.txt -> bla. A txt

Store B shows: bla.A txt (version 2.A)
bl a.B.txt (version 2.B)
bla.txt -> bla.B.txt

Figure 4.33. Virtual duplication example

Solving conflicts this way minimizes direct user interaction. Users can manually
resolve the conflict without any special tools whenever they need to. Consistency on the
same system is provided through soft links.

Thisway of resolving conflicts has the drawback that inconsi stencies between
different stores may now exist. These inconsistencies are only in the file name and not the
file data. Conflicts will still have to be resolved manually.

The switchback problem

One hardship with independent synchronization is the switchback problem.
Figure 4.34, “The switchback problem” gives a graphicsillustration. The switchback
problem occurs if two distinct stores that contain the same information. These stores
synchronize and merge at the same time with two other stores containing another set of
information. If they resolve the conflict differently then they will again create different
versions, which will lead to a conflict.

107

B [fd—[] e [F]

Al Bl [of—Io] [E] [F]

Figure 4.34. The switchback problem

This problem can be solved if both metadata stores resolve a conflict in the exact
same manner and arrive at the exact same solution. This requires two things when using
virtual duplication: The names must be exactly the same and the generated uids must be
exactly the same. Figure 4.35, “ A solution for the switchback problem” shows a graphical
illustration.

BB f—F] [[el

Al e fel—T[c] [¢] [c]

Figure 4.35. A solution for the switchback problem

Thefirst problem isthat the names of the files must be exactly the same. In the
algorithm outlined above, the id of the synchronizing metadata store is used as an extra
file name. Thisisinsufficient, asit leads to different file names depending on the nodes
involved in the synchronization. Instead, the id of the node that has last changed the
metadata is used. Thisinformation was stored in the | ast-changed-on attribute.

Generating the same new idsis the second problem. To provide support for this,
the original id extended with the last-changed-on information. The link will keep the
original id. The two conflicting versions will get the original id with the last-changed-on
information appended. This may happen again, since there may be another conflict in one
of those files.

In this section, a complete solution to synchronize metadata stores was given.

To provide proper synchronization, consistency among metadata stores was defined. A
new algorithm for distributed time based on dual-clock time vectors was introduced. A
conflict resolution algorithm based on virtual duplication was described. The switchback
problem and a possible solution where shown. Using the methods described in here,

108

the metadata stores can synchronize with each other very efficiently. However, the
algorithms described here also apply to other areas of distributed applications: The
dual-clock vector time algorithm can be used for any order of eventsin adistributed
system. The conflict resolution algorithm can be applied to any key-value based data.

Security

SILENUS has two needs for security: Authentication and Privacy. Users need to
be securely identified and it must be made sure that only users with the right privileges
can modify data. Data stored in the SILENUS system must be kept private. Thisis
especially difficult since data is transmitted over an open network and may be stored on
insecure nodes.

The classic security concept is authenticating with the node that provides the
service. This approach works well in atraditional client - server environment. In alarge
distributed environment this would require the user credentials to be replicated among
all service providers. Thisis an administrative challenge. It is also not very secure, as
credentials may be intercepted or read by local administrators and users in the network.

A better approach uses tokens. Instead of authenticating with the service provider,
auser will authenticate with one central server. The server will then issue atoken to the
user. Thistoken can be used to authenticate with services providers which will verify
the tokens authenticity with the central authentication server. This approach is used by
Kerberos[46]. It works very well for smaller distributed applications, but does not scale
beyond one organization. It also requires one particular node to be always available.

A problem with most existing security conceptsis that they don't allow existing
authentication and user databases to be re-used. Every system has its own user and
password database. Most system can import users from other systems, but importing
passwords is very often a problem. Passwords are usually stored in some encrypted
format and cannot be exported. The current solution is to adapt applications to different
credential providers.

Specia credential mechanisms such as fingerprint scanners and smart cards
are hardly ever supported. In few cases, some applications such as computer login are
adapted for these devices. However, the keys stored on such a system could be used for
all kinds of services.

109

What is needed is a scal able security system that makes use of existing
credentials. It should support different administrative domains, but still provide one
unique privacy and authentication mechanism.

Proposition

To solve this problem the following assumption is made: In large scale system
it is more important to recognize returning users. It is not important which identity a
user has aslong as the user has the same identity when connecting again. Using this
assumption a user could provide own credentials. Aslong asit is ensured that the
credentials are safe the user can be uniquely identified.

Trusted third party model

Allowing the user to provide own credentials can lead to an explosion of user
accounts. Therefore a user account hasto be verifiable by atrusted source. Thisis
commonly referred to as atrusted third-party model.

In atrusted third part model a user authenticates with an authentication service.
The authentication service will then provide verification that a given user is alwaysthe
same. The service provider can then verify that a user is the same. Figure 4.36, “Basic
trusted third party model” gives an example.

Figure 4.36. Basic trusted third party model

Thelist of third parties should be small and change seldom. This information will
have to be configured on every service provider. It should change as little as possible.
Every change would require administration.

A trusted third party can be any service providing users. It could be an LDAP
server, awindows domain server, a Kerberos server, or atrusted party signing public
keys. It isonly required that the server can verify users.

Decoupling the authentication service

The basic trusted third party model requires the service provider to be able to talk
to the authentication service directly. Thisis undesirable, and very often not possible. It is
also not defined how the credentials are passed to the service provider.

110

A standard for credentials needs to be defined. This standard should be common,
and should allow verification without talking back to the original service. X500 is such a
standard. It is based on public key cryptography.

The authentication provider will have two additional requirements: It will have
to provide a public key which is signed by atrusted third party and it will have to be
ableto sign small network requests. The actual private key will never have to leave
the authentication service. The service provider can then verify the public key with
its own trust-store. It can verify all network requests with the public key. Figure 4.37,

“ Authentication with public-key cryptography and trust-store” gives an example. This
model works very well with authentication services that provide public key cryptography
such as smart cards.

Figure 4.37. Authentication with public-key cryptography and trust-store

To provide support for existing models that are not based on X500 an
authentication adapter service is needed. This adapter service provides the required
services and uses the existing authentication service as back-end. If will have to be run on
a secure system.

It isimportant that the adapter serviceis able to create new keys for users that
have not yet authenticated themselves with this services. If anew user authenticates
herself, a new key must be created. This key must be automatically signed by the adapter.
The signature from the adapter must be listed as a trusted third party in the truststores.
Figure 4.38, “ Authentication with public-key cryptography and trust-store” gives an
example of the complete authentication process.

111

=d Authertication Adspter /

¢ 1: create local id

5]

Requestor

¢ A 2.4 certificate for local id
2: authenticatelid, pw, lacal id) '

Autherti cationAdapter And CA

3]

beystore

T 2.2 [firsttime]:create permanent id

210 verify(id, pu) ¢ T 2.3 retrieve permanent id

3]

Legacy Authertication Service

Figure 4.38. Authentication with public-key cryptography and trust-store

112

Privacy

A requirement for adatagrid is providing privacy. In adatagrid datais stored
on different nodes in the network. Each one of theses nodes may have a different
administrator or may be compromised. It is therefore important that a security system
provides privacy. Data stored in the network by a user should only be readable by that
user. Users listening on the network or local administrators should not be able to read all
data.

To provide privacy the same security system should be reused. It is now possible
to recognize returning users, so it should be possible to give access only to the user
that has originally stored the data. In typical systems this happens using symmetric
encryption. A user encrypts data with a secret key, and can decrypt the data using the
same secret key.

It is not feasible to require the user to manually keep track of the encryption
keys needed for their data. Therefore the encryption key itself is stored with the data.

To ensure that it is not compromised, the key datais encrypted using public key
cryptography.

Public key cryptography is already provided by al authentication providers
for signing messages. This system can therefore easily be extended to provide support
for encryption and decryption of data. Since the key datais small the workload on the
authentication service is not significantly increased.

When the information is retrieved the encrypted symmetric key is retrieved along
with the data. The service requester will forward this information to the authentication
service which will then decrypt the key data. This decrypted key data can then be used to
decrypt the actual file data.

Roles

The system described so far provides support for single users but not for groups
of users and different roles. An extra step is needed to support user groups and roles.
Belonging to agroup or aroleisthe samein this context. If auser belongs to the group
administrators she may assume the role of an administrator. To support user roles, a new
service called "Role Manager Service" (RMYS) isintroduced.

113

Role Manager Service

The role manager service provides mapping from user to roles. Given a user
handle, the role manager service will provide credentials for al rolesthis user belongs to.
There may be multiple role manager services.

The role manager service acts like a service provider and an authentication service
inone. A user will authenticate against an existing authentication service. Using the
provided credentials, the user will authenticate again against the role manager service,
which will in turn provide credentials for the roles thisuser isin. It will work similar
to the existing authentication services. Figure 4.39, “ Authentication via role manager
service” gives an example of arole manager use.

¢ 1: ereate local userid
2: create local groupid
‘ 2.1: signigroup request, local usrid)
¢ 3: signirequest, local groupid)
Bt 22: authenticatscroupgroup requast, lossl groui local userd) g] 3.1: [request] local groupid — 2]
Group Manager Service Requestor Prowider
26 cedificate: local groupid -» group ==
Keystars Truststors g]
‘ A .20 cerificate: local userid - user id Truststare
1.1: authenticate(user id, pu, lacal userid) .
2.3: verifyrequest signed by losal id
? lreq 4 4 b ? 3.2: werifyfrequest signed by local groupid)
? 2.4 verifylocal id walid for user id)
AutherticationServiceAndCA Global CA ? 33 verilocal greupid valld for greup)
2.6 uerify(authentication service signed by global DAY
f 3.4 warifygms signed by glabal CA)
Heystore s

Figure 4.39. Authentication via role manager service

Using multiple role manager services provides scalable administration. A smaller
part of alarger organization, such as a department at a university, may provide their
own role manager service. The credentials from this role manager service can be used to
authenticate access to local resources, such asfile storage or lab access.

Splitting up security credentials into different authentication services and role
manager services provides support for scalability. Users can have centrally managed
accounts, but their privileges may be controlled by single parts of the organization.
Management for these roles can be delegated to local administrators without giving them
full access.

114

Nomadic RMS

The role manager service may be replicated to different nodes. Since the RMS
has a copy of the secret keys for different roles, it may only be replicated to nodes that
are trustworthy. In most cases, server computersin the local part of the organization
are trustworthy, and sometimes client computers, if their users do not have local
administrator rights. Replicating an RM S gives the usual benefits of replication, such as
reliability and scalability.

To support disconnected operation, a subset of the roles existing on a particular
RMS may be copied. A user may need to use her credentials while not connected to
the network, to access data stored on alocal nomadic system, such as alaptop. To
provide access, a subset of the roles may be copied onto the users host. Thisis supported
by the nomadic RMS. The nomadic RMS will replicate only the roles that contain a
particular user. The user can then access these credentials locally, providing support for
disconnected operation.

Thelocal administrators for the hosts running a nomadic RM S must be
trustworthy. A local administrator has full rights on the host and is able to extract and
intercept al keys, undermining the security. Therefore only keys of roles the user is part
in may be copied. The administrator of the main RM S may also specify which roles may
be copied at all. If auser running anomadic RMS is removed from arole al keys need to
be changed and all existing data needs to be re-encrypted.

Model Performance Analysis
To analyze the performance of the SILENUS system, we have to first identify
what to analyze and how. The performance is expressed in terms of time T needed to
perform a certain operation. We define the following terms:
cm
The client module. May be the Service Ul, the WebDAYV adapter, or any other.
sf
The SILENUS facade module.
mds
The metadata store service involved.

115

bs
The byte store involved.
tm
The transaction manager.
Ibs
Thelocal byte store, for the caching use case.
T(op)
Time for an operation.

P(service)

The time this services needs to process the given operation.

BW(servicel,service?)

The bandwidth between two services, given in data/ time. If there are multiple links
between both services this is the bandwidth of the narrowest link.

L (servicel,service?)

The latencty between two services. This gives the time it takes to send a zero-sized
packet from servicel to service2, without waiting for areturn message. If there are
multiple links between both services thisis the total time to traverse all links.

Size

The size of thefile to be uploaded / downloaded.
We will also make the following assumptions:

* Network links are symmetrical. That is BW(s1,52) == BW(s2,s1) and L(s1,52) ==
L(s2,s1). This true on most network connections. DSL and cable Internet are notable
exceptions.

» The size of method call and return messages is much smaller than the given bandwidth.
In most cases, the method call and return messages will not contain a large data
payload. The model is greatly simplified by not taken the bandwidth into account for
these messages

» All services are available and already discovered. Discovering services and switching
over to different services whenever a service becomes unavailable uses extratime. To
simplify this model, thisis not considered.

116

Given these definitions and assumptions several use cases can now be analyzed.
To get an idea what these time values mean here are some network measures. These
measurements where gathered experimentally and are to be understood as estimates only.

Type Bandwidth L atency
100 MBIt LAN 11 MByte/s 0.08 ms
11 MBit WLAN 1.2 MBytels 0.8 ms
Cable Modem 0.45/0.06 MBytels 25ms
Internet (USA -> Germany) (0.1 MByte/s 75 ms

Table 4.1. Examples of network typesin use today

Browsefiles

—» 1 :list director —»2: . :
:User Y :ServiceUl 2 expandNode :Silenus — 3 :expandNode

:MetadataStore

<46 : directory listing <5 : attributes <4 :attributes

Figure 4.40. Browse files use case

The browse files use case is very straightforward. Adding the times for the
sequence we get:

= P +L +P +L

browse cm cm,sf sf sf.mds

+P +L +P +L + P
mds mds,sf sf sf,cm cm

T = 2Pcm+ 2Lcm gf+ 2ng+ 2Lgf

browse

+P
ds m

m ds

Equation 4.1. Browse file performance

There are two factors that could be dominant here. If we assume that the hosts are
much faster than the network (L >> P) we can reduce thisto:

browse cm,sf sf,mds

Equation 4.2. Browse file performance in slow network

117

Which would estimate to atime between 0.3 ms on alocal network to 300 msto
an Internet network (assuming all 3 services are located on different continents, which is
unlikely).

Upload files
To analyze the file upload speed we will have to look at both the pull and push

file upload. In this case we are only interested in the speed for the actual user module,
and not in anything that happens in the network afterwards. For the performance analysis
we will stop as soon as the client module is done. The timing for both casesis therefore
amost identical. There are extra messages in the push file upload use case.

—>1:uploadFile - —»8a : uploadFileData
:User :ServiceUl :ByteStore

4, 2 : uploadFile

W 7a:ByteSequenceAccessor A 4 :createByteSequence

:Silenus * 7c : prepare + 9a : prepared

. * 10a : commit
"4 3:createTransaction

"\ 6 : commit
K 5:createNode

:MetadataStore :TransactionManager
< 7b :prepare

< 10b : commit

Figure 4.41. Push file upload use case

118

—>1:uploadFile <5a: ;
:User :ServiceUl 5a: downloadFileData :ByteStore

4 2 : uploadFile

71 4 : createByteSequence * 7c :prepare + 8a : prepared

:Silenus

* 9a : commit

4, 3 :createTransaction

\\ 6b : commit
X 5b :createNode

:MetadataStore :TransactionManager

< 7b :prepare

<4 9b : commit

Figure 4.42. Pull file upload use case

Pcm+ Lcmsf+ P +L

pull sf sf tm
+P +L +P +L
tm tm,sf sf sf bs
filesize
+P + + P
bs BW cm
bs,cm
T = T +L +P +L
push pull bs,cm sf sf,mds

+P +L +P +L +P
mds mds,df sf sf,cm bs

Equation 4.3. Upload performance

Assuming again that L >> P we set P=0 and simplify:

filesize
= L +2L +L +
pull cm,sf sf,tm sf.bs BW
bs,cm
= +L +2L + L
push pull bs,sf sf,mds sf.cm

Equation 4.4. Upload performance in slow network

The performance will depend greatly on the file size and the network used. Using
the sample network values and some sample file sizes a speed estimate can be made.

119

Filesize LAN WLAN Cable I nter net
0 0.32ms 3.2ms 100 ms 300 ms
1kb 0.40 ms 4ms 102 ms 310 ms
10 kb 12ms 11.3ms 120 ms 397 ms
1mb 90.3ms 836 ms 2322 ms 10300 ms
1gb 93s 853s 2275s 10240 s

Table 4.2. Estimated upload times for pull file upload

For small files (< 1kb) the network latency is the dominant factor. For larger files
(>10Kkb) it is the bandwidth between the client module and the byte store service that
determines the speed of the upload.

This analysis uses a single source for the file. Work is currently done to
investigate download from multiple sources, which should greatly improve performance.

Download files

When downloading there are two cases to consider. Thefirst one is direct
downloading to the client module. The second one involves caching the downloaded file
locally. Here, the second use case can again be expressed in terms of the first use case.

—» 2 : download

—» 1 :download
:User :ServiceUl :Silenus %3 :expandNode : Store
<7 :bytesequence

<-4 :metainfo

|

—» 5 : getBytesequence

<6 : bytesequence

—» 8 :download

:ByteStore

Figure 4.43. Download without caching use case

—1:download - —» 2 : download " —»3: download
:User :ServiceUl :Silenus
gQ <—9b : bytesequence ‘ <4 : metainfo

-7 :downloadFrom

dataStore

|

—» 5 : getBytesequene

¥ 10b : download

—>8 : bytesequence

<6 : bytesequence

:ByteStore

—9a : download
:ByteStore ‘

Figure 4.44. Download with caching use case

120

nocache

cache

P +L +P

cm cm,sf

sf

+ L +P

sf,mds mds

+ L +P +L +P +L
mds,sf sf sf,bs

bs bs,sf

filesize
+P +L +P +
sf sf,.cm cm
cm,bs
L
nocache sf lbs
filesize
+P +L +
Ibs 1bs,sf BW
cm,Isb

Equation 4.5. Download performance

Assuming again that L >> P we set P=0 and simplify:

nocache

cache

2L

+ 2L

cm,sf sf,mds

nocache

L
sf.bs

L
sf Ibs

filesize
BW

cm,bs

+

+
BW

cm,Isb

filesize)

Equation 4.6. Download performance in slow network

For the example networks and some example file sizes this |eads to the following

|

results:

Filesize LAN WLAN Cable Internet
0 0.48 ms 4.8 ms 150 ms 450 ms
1kb 0.56 ms 56ms 152 ms 460 ms
10 kb 1.4ms 129 ms 170 ms 547 ms
1mb 90.5ms 838 ms 2372 ms 10450 ms
1gb 93s 853s 2275s 10240 s

Table 4.3. Estimated download times without caching

121

Again, for small files the dominant factor isthe latency. For large files the
bandwidth is more decisive.

For downloading with caching it depends where the local byte store islocated. If
it islocated on the same host as the client module the transfer will be fast, because it is
local. But these numbers show that the local byte store does not have to be on the same
host. If the original serviceislocated on the Internet, a byte store service in the local
network will not add a significant overhead.

122

CHAPTER 5. VALIDATION

Conceptual SILENUS Validation
There are two types of validation: Conceptual validity and operational validity.
Some features, e.g. remote access and migration, are so inherit in the design that they
can be validated if the given approach is followed. Other items, such as disconnected
operation, have to be tested through experiments.

Problem

—~%| Entity [™—

A '
s A}
) Y Conceptual
Operational " M 5 .
Validity Lo voce
. Analysis Validity
Experimentation and \
‘ Modeling \
. !
| ; N
| Data Il
| ‘ Validity . |

1 ’)
\ J ") f."
A3 L
Computerized Conceptual

Computer Programming
Model T Model

and Implementation

- Computerized -~
T~ Model —
Verification

Figure 5.1. Sargent Circle

To verify the proposed architecture a conceptual model has to be designed.
The conceptual model will describe a software system that solves the given problem.
Conceptual model validity is defined as determining that the theories and assumptions
underlying the conceptual model are correct and that the model representation of the
problem entity is reasonable for the intended purpose of the model. Since the conceptual

model is derived from the architectureit follows that it isvalid if the architectural model
isvalid.

123

Class-level Design

To develop a conceptual system model an object-oriented approach is chosen. As
such, the whole system is split into individual packages. Each package is then split into
several classes.

Package Diagram

The most natural mapping isto create one package for every component in the
SILENUS system. Figure 5.2, “Package overview for the SILENUS system” shows the
top-level package diagram. The core package contains the interfaces. The util package
contains common utilities. The silenus package contains the SILENUS facade and the
human interface. The optimizer package contains optimizer services. The nfs package
holds the implementation for the NFS adapter. The midas package contains the metadata
store implementation. The compatibility package contains compatibility adapters. The
byzantium package contains the byte store implementation.

compatibility byzantium

Figure 5.2. Package overview for the SILENUS system

Class Diagrams
Each package will consist of multiple classes. The class diagrams for all packages
are shown here.

124

Figure 5.3, “SORCER interfaces in core package’ shows the SORCER interfaces
in the core package. These interface conform to the SORCER notion of an exertion,
where an exertion defines a method name and a service context. The service context
defines the datafor the call.

«interface» «interface» «interface»
Coordinator 0 Sor cer M etadataStore 0 Sor cer ByteStore

downloadFile(in context: ServiceContext): ServiceContext createNodefin context: ServiceContext): ServiceContext createByteSequence(in param: ServiceContext): ServiceContext

registerForEvents(in pc: ServiceContext): ServiceContext deleteNodefin pc: ServiceContext): ServiceContext getByteSequencelin param: ServiceContext): ServiceContext

replicateFile(in pc: ServiceContext): ServiceContext expandNode(in context: ServiceContext): ServiceContext getFileAttribute(in param: ServiceContext): ServiceContext

P09 @

uploadFile(in context: ServiceContext): ServiceContext

%

«interface»
0 SorcerFileStore

getTimeVector(in pe: ServiceContext): ServiceContext getProviderI D(): ServicelD

[T S

registerForEvents(in pc: ServiceContext): ServiceContext getSupportedAttributes(in param: ServiceContext): ServiceContext

retrieveChangeL ogSince(in pc: ServiceContext): ServiceContext

retrieveL itOfAll ActiveNodes(in pe: ServiceContext): ServiceContext

LI~ = I I T - I -)

updateNode(in context: ServiceContext): ServiceContext

createNodein pc: ServiceContext): ServiceContext
deleteNodein pc: ServiceContext): ServiceContext

expandNode(in context: ServiceContext): ServiceContext

LoD~ =]

setAttributes(in pe: ServiceContext): ServiceContext

Figure 5.3. SORCER interfaces in core package

The SORCER interfaces are used when SILENUS is accessed through a
service-oriented program. However, internally and externally am object oriented interface
is provided. Thisinterface follows the traditional object oriented approach. Figure 5.4,
“Object-oriented interface to metadata store”, Figure 5.5, “ Object-oriented interface to
byte store”, and Figure 5.6, “ Object-oriented interface to SILENUS facade” show the
diagrams for the metadata store, the byte store, and the SILENUS facade.

125

O vsid

nF itemiD: UUID
oF originatoriDs ServicelD
%F ROOTID: Msuid

3F seialversionuiD: long

E'; Msuid(in itemUID: UUID)

@ appendiD(in sid: ServicelD)
equals(in obj: Object): boolean
fromString(in name: String): Msuid
hashCode(): int

randomMsuid(): Msuid

toString(): String

e e ee e

withOriginator| D(in servicel D: Servicel D): Msuid

@ FilestoreEvent

%F ALIVE_EVENT: long
%F CREATION_FILEDATA_EVENT: long
%F CREATION_METADATA_EVENT: lor
oF changedAttrs: Object
%F HAS_SYNCHED_EVENT: long
- ool lilnFsss'ia\/ers'onUID' long
sourceltems: Msuid
nF timeVector: Time
wF UPDATE_FILEDATA_EVENT: long

F UPDATE METADATA_EVENT: long

FileStoreEvent

FileStoreEvent

F Y

F Y

@ getChangedAttrs(): Map
@ getSourceltems(): Set
Lo}

getTimeVector(): Map

key
0.7 ‘timeV ector

@ Time

globa: long
local: long

serialVersionUID: long

Time()
Time(in local Time: long, in global Time: long)

o

o

i

&

&

i@ getGlobal(): long
@ getlocal(): long

@ incrementGlobal()

@ incrementLocal AndGlobal()

@ setGlobal(in newGlobal: long)
@ setLocal(in newLocal: long)

o]

toString(): String

-timeVector | 0.1

| =T - R R - R -l]

«nterface»
0 MetadataStore

createNode

deleteNodefin node: Msuid, in recursive: boolean)
expandNode(in node: Msuid): Map
getProviderID(): ServicelD

getTimeVector(): Map

egi in listener:

retrieveChangelogSince
retrievelistOfAllActiveNodes(): Collection

updateNode

@ M etadataStoreChangel og
%:F seridVersionUID: long
A MetadataStoreChangelog

i@ getChangedAttrs(): Map

@ geTimeVector(): Map

® Nodecreated

nF msuid: Msuid

3F seriaversionuID: long

& NodeCreated
@ getAttributes(): Map
@ getMsuid(): Msuid

Figure 5.4. Object-oriented interface to metadata store

126

istener, in desiredL ease: long): Lease

® Bsid «nterface>
ByteStore

%F HEXBASE: int

%F NULLBSUID: Bsuid createByteSequence
DF part: long createByteSequence
GF siaversionuip: long getByteSequence(in uid: Bsuid): InputiileChannel Accessor
o wid: vuiD getFileAttribute(in uid: Bsuid, in attribute: String): String

getProviderI D(): ServicelD

LIS R

&F Bsiid(in uidPart: LUID, in partPart: long)
getSupportedAttributes(): Collection
@ equals(in obj: Object): boolean
@ fromSuing(in name: String): Bsuid
@ hashCode): int

@ nullBsid(: Bsuid

G ByteSequenceCr eated

DF bsuid: Bsuid

& redomBsid;: Bsid GF seriaversionUiD: long

@ toString(): String & OutputfileChannel

& reated(in i OutputFileChannel , in newBsuid: Bsuid)

@ getBsuid(): Bsuid

=]): OutputFileChannel
<interface
0 OutputFileChannel Accessor

@ openOutputFileChannel(): FileChannel

«nterface»
0 InputFileChannel Accessor

@ openinputFileChannel(): FileChannel

Figure 5.5. Object-oriented interface to byte store

@ serviceunavailableException 0 - Ote;’re'fa‘:
emi EeNUSA ccessor

4F seriaversionuID: long

@ getMetadataStore(in oldiD: ServicelD): MetadataStore
@ seviceUnavailableException(in whichService: Siring)

«interface»

O Filestore
A& creaieNode
@ deleteNode(in node: Msuid, in recursive: boolean)
@ downloadFile(in node: Msuid): InputFileChannel Accessor
@ expandNode(in node: Msuid): Map
@ regi listener: istener, in desiredL ease: long): Lease
@ replicateFile(in msuid: Msuid, in byteStore: ServicelD): boolean
A& setAttributes
& uploadFile
A& uploadrile

Figure 5.6. Object-oriented interface to SILENUS facade

The detailed information on these interfaces can be found in Appendix A,
Reference.

127

Technical Architecture

The actual implementation of these interfaces was done using the Java language
and existing frameworks. We will describe the technical architecture and the deployment
of the services during the validation.

The technical architecture describes which packages and frameworks have been

used in developing the prototype. Figure 5.7, “ SILENUS Technical Architecture” shows
the technical architecture.

End User

Existing OS

J2EE MIDP

J2SE J2ME

Figure 5.7. SILENUS Technical Architecture

128

Operational SILENUS Validation

To validate the proposed solution the design and its implementation have to be
validated against the problem statement. The solution should provide all the requested
core features. It should provide all the given architectural qualities. In addition, it should
provide all the use cases for the given roles.

To validate through experiments a prototype was devel oped. The architectural
model was then being tested against this prototype. The experimental setup is as
following:

The implemented system and its components where deployed in the SORCER
lab. The services where started on different machines using different architectures. The
experiments that where conducted where: Validation of the use casesin a connected
system, validation of the meta computer role using the SORCER proth application, and
validation of disconnected use using alaptop. Each one of these experiments is now
explained in more detail.

Deployment Diagram

To conduct the experiment the services where started on different hostsin the
SORCER lab. Figure 5.8, “Deployment Diagram” shows the complete overview over
the hosts involved in the experiment. Not all the services shown here where relevant for
all experiments. The hosts Y ew, Willow, Persimmon, Lime, and Hemp are serversin
the lab. They where used to simulated a distributed server environment. The host Y ucca
simulated a desktop machine that was used to access the services. The host Corddliaisa
laptop that was used to verify disconnected operation.

129

Yucca Yew Willow Persimmon Cordelia
{OS=Windows} {OS=Solaris} {OS=Solaris} {0S=Solaris} {0S=Mac OS X}
] €]] £ £
:ServiceBrowser :ClassServer :ClassServer :ClassServer :ServiceBrowser
£ £ g] £ |
:ClassServer :ServiceRegistry :ServiceRegistry :ServiceRegistry :ClassServer
£ £] £ £
:TransactionManager :TransactionManager :TransactionManager :ServiceR egistry
£] £]
:MetadataS tore :TransactionManager
Lime Hemp] £
{OS=Solaris} {OS=Linux} :ByteS tore :SilenusFacade
g] | |
:FileS torerCompat :MetadataS tore :NFS Adapter :SilenusFacade :Metadata$S tore
£ | £ |
:ByteS tore :SilenusFacade :AttributeCompleter :ByteS tore
£] £
:Replicator :NFS Adapter

Figure 5.8. Deployment Diagram

Validation in a Connected System

After the services where deployed, the use cases where verified. The host Y ucca
was used to display the ServiceUl human interface user agent. The ServiceUl was used
to verify the use cases. The host hemp provided and used the NFS adapter. This was used
to verify the use cases using built in operating system support. Data integrity was verified
using built-in functionality and using the actual saved data. The use cases where verified
using the ServiceUl, the NFS adapter and the mobile client and gateway.

The use cases that where validated using the ServiceUl where: browse files,
upload files, download files, modify file metadata, replicate files, provision service, and
stop service manually.

Most of thisfunctionality could be verified at the same time, as the use cases
depend on each other. To download afile, it must be found first through file browsing.
Oncethefileisfound, it is displayed, for which it needs to be downloaded.

The browse files and the download file use cases proved to be successful. A
service browser was invoked on the client host. The service browser picked up the
SILENUS facade services running on the server hosts in the lab. Both facade services
provided the ServiceUl user agent. This user agent showed the file directory structure

130

that was present in the SILENUS system. Figure 5.9, “Using the ServiceUl to browse
files” shows a screenshot of the user agent displaying the file and directory structure. The
selected file was downloaded to the client machine and displayed there.

& Inca X: Jini Service Browser v5.1 [IX-01] - Licensed to Texas Tech University - Computer Science Dept [academic license]

Fle View Fiters Toolk Plugins Window Help

@ Logkup services (i1 Services | i admin | () adminur () Mainr |
éMd ;I File Edit Help Wiew
-l vidss

Lease Renewal Service =) This is @ sample RTF fils
Byzantium ‘ =] bla

RMI Server Arithmetic ("] folder31 .
Javaspace oW atedtfiletd tcantains FOrMatting meyn
Integral-Evaluater M| # Colby_Sites.doc
JERI Arithmetic Example ||| + SSRGS
SORCER-Jobber
Transaction Manager

ample
~# test.html
¥ Folder

(i3 Function-Evalustor § 2 NEV:hFDHEV atribute Value
E ':"|E”"—‘ B _ prol — originator [275be5dc-1edB-49d1-9719-00d51 BeedF 13
(=) Irf‘t‘allzefoﬂdltlw . ;tn 9 getlastmodified [September 23, 2006 4:02:20 PM DT
= Midzs = fokder2 sha [3b6e3dame 1 ShaTF 26883 62E0E05r 136 .
—_— jfu\dera mds [5ab697 643143860 5ch4267 4abB206f
Enr Value
e S of| e venroer o S
SorcerServiceType.pravid., . [Slenus [~ b5 _store getmet sbastmodisd (Octaber 2, 2006 7:06:32 PH COT
SorcerServiceType.short... |4 FileStore implementation . k:gl:\;twfl typewassethy extension
SorcerServiceType.servic,.. sarcer.slerus.core. Sorce. ||| o feanm getcontenttype etirtF
SarcerServiceType.groups [sorcer DEV - : a ;t”'e getcontentisngth 342
Eorcersarwcewpe.spaces sorcer DEV b location Hrc108d3d4-32cd-4c6e-aB801-beeBS7eda. .
|SorcerServiceType.lacation parent [<053d850-5905-46be-a832- 0862407 1d83
SorcerServiceType.host |poppyl.cs.ttuedu creationdate [September 16, 2006 6:31:43 FM CDT
}EurcerSErv\\:EType.userDir Jprivate/varfautomaurt]p...
JorcerservicaType.useri... lberger || |Example.tf testjrt)

Figure 5.9. Using the ServiceUl to browse files

The same ServiceUl was aso used to verify the other use cases. Thefiles, which
are displayed, have been uploaded prior using the same ServiceUl. A local filewas
selected, and then uploaded into the SILENUS system. The byte replicator service was
running and immediately replicated the file as soon as it was uploaded. When the byte
replicator was not running, the files where still uploaded to arandom byte store.

Modifying file metadata was tested on several levels. The directory structure in
the SILENUS system is pure metadata; so just creating a directory did already modify
the metadata. When afile was uploaded, its metadata was filled with reasonabl e default
values. When the attribute completer service was running, this metadata was completed
with the checksum attributes for sha and md5. All attributes could be also be modified
manually. Thiswas tested by renaming files and modifying attributes such as file content
type.

File replication was tested using the hoard functionality in the ServiceUl and the
automated replication service. The hoard function checked if a byte store on the local
machineis available, and if so, initiates replication to the local machine. Thisworked

131

well for the case where alocal byte store exists, but showed to have too long timeout
when no local byte store could be found. The byte replicator service worked very well: It
was tested by terminating on of the byte stores on the network. The byte replicator then
replicated the files to the third byte store available.

Service provisioning was tested using the RIO framework. The two optimizer
services (byte replicator and attributes completer) where implemented as RIO service
beans. As such, they could be successfully deployed on any host running a cybernode
service. Provisioning the other services proved to be more difficult. The byte store and
the metadata store need alocal data directory. This must be available on the running
machine. There was also a problem with RIO-assigned Service Ids and the way the
SORCER framework handles Service Ids. These issues need further investigation, but the
optimizer services served as a proof of concept.

Stopping a service manually was the easiest use case to test. There are two ways
of stopping a service: Killing the actual service process, and terminating the service
gracefully. When the service processiskilled by force, it stays visible in the lookup
service until its lease expires. Thiswas sometimes confusing, as the service was still
visible, but not responding. When a service was terminated gracefully through the destroy
method, it properly deregistered.

Since the ServiceUl isthe most specific client, it was used to verify most of
the operations. The other interfaces had to provide less functionality due to protocol
constraints in case of the NFS adapter and computational constraintsin case of the mobile
client.

The NFS adapter was used to validate the use cases: browse files, upload files,
download files, and modify file metadata. The NFS adapter provides support for all
operations present in the NFS version 2 protocol. As such, the directory was mounted
on aUNIX machine. The directories could be browsed using the operating systems
build in functionality. Files could be downloaded, uploaded, and edited directly using
existing applications. Figure 5.10, “ Standard UNIX |s application used for browsing”
shows a screenshot of the standard UNIX |s application being used for browsing the files.
Figure 5.11, “ Standard UNIX cat application used for download” shows a screenshot
of the cat application that is used to display afilein the system. The NFS adapter was
also tested on aMac OS X system where more graphical browsers and applications

132

where used. Mac OS X build in TextEdit seemed a very good candidate. Unfortunately,
it creates and renamed several temporary files when saving, resulting in an administrative
overhead and a significant performance impact.

herger@hemp: /mnt/silenus > ls -la =
total 25

druxrwxruwd 2 root root Slz Cot 2 19:13 bla

—CUXCWxruwx 1 root root 156Z0 Sep 30 14:35 bla.txt

—rWXrwErwK 1 root root 6148 Sep 29 17:46 DS _Store

druxruwxrux 2 root root Slz Ot 2 19:14 Folder

druxruwxrux 2 root root Slz Oot 12 13:24 Mew Folder

druxrwxrms 2 root root 512 Sep 25 14:43 proth

druxruwxrux 2 root root Slz Oot 2 19:15 test

hergerfhemp: /mnt/silenus > I

Figure 5.10. Standard UNIX Is application used for browsing

- hemp.cs.ttu.edu - PuTTY

hergerfhemp:/unt/silenus/bla > cat "a text file.txt™ ;I
This is a sample text file.

Test!!!lasdfa

herger@hemp: /unt/silenus/bla > D

Figure 5.11. Standard UNIX cat application used for download

The mobile gateway and client where used to validate the use cases: browse
files, and download files. The restraints here where imposed by the limited capability of
amobile phone device. The tests where done using a mobile phone emulator from the
J2ME development toolkit. The current implementation provides read-only functionality,
which is sufficient for testing purposes. Figure 5.12, “Mobile client used for browsing
and displaying files from the file store” shows the mobile client being used to browse
filesin thefile store. It also shows the mobile client being used to download and display
files stored in the system.

133

Figure 5.12. Mobile client used for browsing and displaying files from the file
store

These test have shown that the user role works fine, not matter which interface the
user selects. The ServiceUl could provide the most functionality. Existing applications
can be used through operating system adapters. The mobile client and gateway can
provide the file system content anywhere.

Validation for the Metacomputer Role

To validate the metacomputer role the proth application was chosen. Proth is
agrid application that searches for large prime numbers. It has been used in previous
experiments to show other aspects of the SORCER framework. It uses the SORCER
file store service to deploy an application across multiple hosts. It also uses the file store
to transport input data to the service provider. After the calculation, the output dataiis
written back into the file store.

134

The proth application was validated using a compatibility adapter for the existing
SORCER file store service. The requested functionality was mapped from the old
file store interface to the new SILENUS file store interface. No code changes where
necessary to the existing proth application.

Proth isa calculation intensive grid application. The data transported through
thefile storeisrather small. There where therefore no significant performance boosts or
delaysin using the SILENUS file store.

Validation for a Disconnected System

One of the main strength of the SILENUS model isthat it expects and handles
disconnection. To test disconnection, two approaches where chosen: Simulate
disconnection by terminating services, and actual disconnection by unplugging a network
cable.

When simulating disconnection by terminating services everything worked as
expected: The services disappeared. The facade picked up another metadata store. When
uploading a new file, the facade picked another byte store to store the data in. Changes
could still be made to the system. When the original metadata store was started up again,
it synchronized with the metadata store on the network and applied all changes. The byte
replicator replicated all files that where available on only one byte store.

To simulate concurrent modification, two sets of services where run. First, both
sets of services where run simultaneously. Some files where uploaded and directories
created to test metadata propagation and replication. Then one set of services was shut
down. The remaining services could still be used to browse and modify the file system.
Two files where modified. Then this set of services was completely shut down and the
other set of services was started. They still contained the old information, which could be
browsed. Two files where modified: One was the same file that was modified before; the
other file was another one that was not modified on the first set of services. Then the first
set of services was brought up again. Both metadata stores immediately synchronized.
The unrelated files just propagated their changes. The concurrently modified file was
virtually duplicated, resulting in three files: Two with the actual file content, and a
symbolic link to one of them.

135

Actual disconnection proved to be more difficult to validate. To test real
disconnection, one set of services was run in the SORCER lab. Another set of services
was run locally on alaptop. At first, the laptop was connected to the network. Browsing
and downloading files worked just as expected. When the network cable was unplugged,
two problems occurred: The network interface was shut down, and the services where
still visible.

The first problem was in the network interface. Modern operating systems such
as Windows XP or Mac OS X can detect if a network cable is plugged in or unplugged.
They will automatically disable the network interface when a cable is unplugged.
Thiswill also delete all 1P addresses and routes that where previously assigned to that
interface. Since the services are registered using the external |P address, all services
seemed to disappear. This problem could be solved by forcing the network interface to
stay active. Thisis, however, not avery good solution. Unfortunately, the registration of
the services is part of the Jini technology that SORCER is building upon. This issue will
have to be investigated more in the future.

The second problem was that of services not disappearing, even though they are
not connected. The reason for thisliesin the way Jini manages disconnected resources:
Using leases. Each service holds alease on its registration. These leases must be renewed
after acertain timeto stay active. When a service is shut down properly, it deregisters
itself from the registration service. When it isimproper shutdown or disconnected, it will
not disappear until the lease expires. The default timeout for registration leases was set
to five minutes. It could therefore take up to five minutes for a service to disappear from
the registration provider. For the validation, thisissue was improved by reducing the
lease timeout. In the future the SORCER framework will support a heartbeat mechanism.
which will alow faster detection of disappearing services.

After restarting the network interface and waiting for the lease timeouts, the
services disappeared as expected. The SILENUS system was still accessible on the
laptop, as well as on the lab servers through a desktop system. Both worked as before. A
file was modified concurrently to test the disconnected operation.

When plugging the network cable back it again took awhile for the services
to find each other. Thisisasimilar problem that isinherited from the Jini framework.
Jini registration services send out multicast packets every 30 seconds. Until one of

136

these packets is received, the services are unable to find each other on the network. It
can therefore take awhile until the metadata stores discover their reconnection. After
they discovered each other, they exchanged the information and the file store was
synchronized again. The concurrently modified file was virtually duplicated, as expected.
The system worked as expected during its disconnected operation. The detection
of the disconnection and reconnection is very slow. However, when bringing a laptop
back onto the network, it may be permissible to wait one minute before synchronization.
The alternative is decreasing the lease time and decreasing the time between multicast
announcements, flooding the network with more messages. In most cases, waiting for a
short time to resynchronize is permissible, as long this happens very infrequently, such as
once a day when the laptop is connected and disconnected.

Data Integrity
The dataintegrity was checked using two different methods. The first method was

directly comparing the filesin the byte store. The second one was using integrity checks
implemented in the SILENUS administrative Ul and in the byte store.

For the first integrity check, the files on the byte store where compared directly to
their originals using the UNIX diff command. No files showed any difference, so thefile
transfer into the byte store worked without problems.

The other integrity check was build into the system. Each byte store has the
capability to provide cryptographic checksums for all files stored in it. The supported
algorithms are SHA and MD5. The expected values for these checksums are stored in the
metadata store. When invoking the integrity check, each byte store is asked to compute
the checksum, which is then compared. As expected, there where no differencesin the
expected and calculated checksum.

To test the checksum agorithms, afile was intentionally corrupted. When running
the integrity check, the file reported different checksums and was detected as corrupted.
This shows that the file integrity checking works as expected.

137

Validation of Architectural Qualities

The previous tests showed the use cases and disconnected operation. Another
requirement was that the system should provide these architectural qualities: Network
transparencies, confidentiality, global availability, disconnected operation, manageability,
scalability, reliability, modifiability, and platform independence.

The network transparencies are inherited from the service-oriented design. It does
not matter where the actual serviceis, it will always be available to a user on the current
network. During tests, it showed that it may take time to discover the services, but the
system always works as long as at |east one of the servicesis available. It does not matter
on which host.

Confidentiality was not tested. The security concept was designed, but not
implemented. It could therefore not be tested. However, existing encryption algorithms
have proven itself in the past.

Global availability was tested using the mobile browser, the ServiceUl, and a
prototype of aWebDAV adapter. In all casesthe file store and its contents showed to be
available. The mobile browser was tested using an emulator. It connected to the system
using a mobile gateway, which provided the actual files. The ServiceUl was run from
different hosts, where only a service browser was installed and no component of the
actual SILENUS system. The WebDAYV adapter prototype was used to connect to the
SILENUS system from a Windows and aMac OS X host. In both cases the files where
available for browsing, viewing, and modifying.

Disconnected operation was tested using simulated disconnection and actual
network cable disconnection as explained in an earlier section.

Manageability was tested through testing the implemented optimizer services.
When a service was terminated, the byte replicator picked up that there are not enough
copies, and starts replicating files. This showed the concept of autonomic management
services. It could further be improved by adding more optimizer services.

Scalability was not tested on the implementation; it isinherit in the design.

In the design, services federate when arequest is made. If the system is overloaded,
new services of the same type can be added to provide more responsiveness. The only

138

services that need to communicate with multiple other services are the metadata store.
The theoretical analysis suggests that the system scales well up to thousands of metadata
store, but thisis yet to be proven.

Reliability was tested through disconnecting and randomly terminating services.
Aslong asthere was still at least one of each service available, the system could not be
brought down. It was always available to browse the files. When the right byte stores
were terminated quickly enough the actual file content became unavailable. This could
only be fixed by bringing at least one byte store with the file content back online. This
will need to be improved with better optimizer services in the future.

Modifiability was constantly tested during development. Every time a
maodification was made, this update would have to be propagated to all hosts running the
services. In all casesit was enough to just restart the services, and they did download the
newest version of the code on startup.

Patform independence is provided by the choice of the Java platform. In the tests,
the services where run on Windows, Solaris, Linux, and Mac OS X using the 1386, sparc,
and powerpc architectures. In all cases the services behaved exactly the same, on any
tested architecture and platform combination.

Thisvalidates that all of the architectural qualities other than security that where
requested are actually provided by the system.

Actual Performance

To measure the actual performance tests where conducted using the NFS adapter.
These tests do not only measure the performance of SILENUS, but also the performance
of the network device, the NFS adapter, and the NFS client application.

For local disk to disk a standard copy operation was used and timed. For Disk to
SILENUS afile was uploaded into the SILENUS system. For SILENUS to disk afile
was downloaded from SILENUS to the local hard disk.

This data was collected using the test layout that was shown in the deployment
diagram earlier. The hosts are connected through a 1 GBit network. However, the hosts
involved have a 100 MBIt network interface.

139

What Okb 10KB 1MB 100 MB
Disk to disk 0.0 sec 0.0 sec 0.0 sec 0.7 sec
Disk to 0.2 sec 16sec 1.7 sec 22.8 sec
SILENUS
SILENUSto 0.0 sec 0.1sec 0.2 sec 16.6 sec
disk

Table 5.1. SILENUS performance over the NFS adapter

This shows that the performance of the SILENUS system is not so much
dependent on the actual file size but rather on the number of requests. Creating an empty
fileisamost instant, but it till requires a metadata modification. Retrieving an empty
fileisinstant, asthere is no file content to retrieve. For small files, the time for creating
thefileis about 2 seconds, not really dependent on the file size. Retrieving afileis much
faster: No transaction is needed and no modifications are done. For alargefile, the
actual network performance shows. The raw data given in the theoretical performance
analysis suggested that a 100 MB file could be transferred in about 9.3 seconds. For file
upload, the SILENUS system reaches 40% of the maximum network performance. For
file download this increases to 56% of the maximal network performance. Given the
overhead of locating thefile, transferring it from a byte store to the NFS adapter, and
through the NFS protocol to the local host these values are very satisfying.

This shows that the claim that the SILENUS model performance is just dependent
on the network performance could not entirely be validated. For small filesthetime it
takes to transfer the data over the network does not outweighs the management overhead.
Thisis especially truein the creation of files, as several services areinvolved. However,
once the file gets larger the management overhead diminished and the performance
gets closer to the actual network performance. When the link is slower, such as over the

Internet, there should be no performance impact.

140

CHAPTER 6. CONCLUSION

The questions that were asked in the introduction were: Can a dynamic approach,
such as service-orientation, provide the reliability and stability required for afile system?
And if so, how can this be done? These questions can be answered with: yes, it is
possible to provide areliable file system. This can be done using the SILENUS model
introduced in this dissertation.

For this dissertation, a new model for a metacomputing file system has been
introduced. The SILENUS model splits up the file storage into separate services for file
content, metadata, and management. These services are not connected statically, but
rather federate dynamically to provide afile system service.

Also, anew methodology for using this metacomputing file system was
introduced. Users can access their files through a zero-install ServiceUl, through a
mobile client, and with existing applications through the use of adapters. The facade
services provide entry points and coordination services for the system. Services can be
autonomically provisioned using the RIO framework. Optimizer services can take over
management tasks and can be tailored to specific user needs.

A new algorithm for metadata store synchronization based on a dual-clock time
vector system was devised. This algorithm is generic and can be used to synchronize
any key-value based data in a distributed and disconnected system. It provides areliable
method of ensuring data consistency.

The data storage service byte store and metadata store have been designed and
implemented. These services provide support for the storage of the datain the SILENUS
system.

The management services facade, byte replicator, and attributes completer have
been designed and implemented. These services provide management functionality and
access point as specified by the model.

User agents have been invented and devel oped for desktop and mobile users.
Adapters have been developed for existing operating systems. This gives the user a broad
range of methods to access their stored files.

141

Aninitial security model for adistributed file storage system has been specified.
However, this model hasto be further developed, because full security is beyond the
scope of this dissertation.

This dissertation could only provide amodel and greater architecture. There are
several aspects that can be improved. Some have already been outlined throughout the
dissertation and others are described here. Most of these topics are already being actively
investigated by other students.

The byte store to byte store and byte store to user transfer can be greatly
improved. Adam Turner is currently working on distributing files in chunks across
multiple byte stores in federation based on the bittorrent model. This would split up large
filesin smaller parts, alowing these parts to be downloaded from different locations. It
would use multiple channels, thus increasing overall performance.

More confidentiality checks can be enforced. This dissertation could barely
scratch the security topic. There are several more decisions to be made: How can
permissions be set, modified, and revoked? How can these be enforced? How can
apolicy for adistributed file system be managed? Daniela Inclezan is currently
investigating security in federated systems.

Adam Thomas-Murphy islooking into virtual files and directories. What happens
if only asmall part of afileis modified? Would the whole file be re-created? Or can
small changes be made? What if a part in the middle of afile changes size?

The location of the files can also be optimized. Files that are available in the local
network may not need to be replicated. It may make sense to keep at least one copy of
each file at two different physical locations to provide resistance against catastrophes.
Chris Hard is researching ways to optimize the locations of actual file storage.

The current implementation provides an NFS adapter for UNIX systems. In the
original design, aWebDAYV adapter for UNIX and Windows systems was suggested.
This adapter is currently being completed by Fagjin Wang.

The design also suggested a JXTA adapter for connection to the IXTA content
management service (CMS). Thiswould provide support for files over an existing
wide-area peer-to-peer network. Some questions would have to be answered such
as: How can SILENUS be mapped to JXTA advertisements? How would security be
managed in such awidely distributed system?

142

The optimizer services designed and implemented here barely scratch the surface
of what optimizers could do. One possible optimizer service would try to derive attributes
from file content and add the information to the metadata store. It could read images,
music files, or word documents. The additional information can then be used to quickly
find matching files stored in the system.

Fully automated provisioning would be another exiting topic. Why does a service
need to be started manually when it can be done automatically? Services can provide
their current service state and utilization. Services can automatically be shut down
when underused or automatically be started when overused. Thisis especially true for
optimizer services, and the SILENUS facade, but can also be applied to metadata stores
and byte stores.

One of the core features was easy installation. The existing system provides
zero configuration: Services can discover themselves automatically. The configuration
necessary on each machine is reduced to creating a network name. However, there should
be auser-friendly way to install, start, and stop the services. Services should be started
automatically when the machine boots up, on al major operating systems.

The system described here accumul ates data: M etadata stores keep alot of old
information to re-create changel ogs. Byte stores keep old files for undeletion. At some
point, this old data has to be cleaned. Sophisticated algorithms have to be developed that
can carry out this task.

Even with all these future research topics the framework model has proven itself.
It can be used for file storage in a changing network environment. The future work can
add value to the existing system.

My vision for the future of the SILENUS system would be: | create a document
at work, and modify it, and at five | leave the office and drive home. The system
automatically detects my behavior guessing that | want to continue working, and at that
time automatically replicates the latest copy to my home machine. When | arrive thefile
isavailablelocally, so that | can work and create new versions. If my Internet connection
goes down | won't notice, and when it comes back up again the files are automatically
replicated, giving me reliability and dependability.

143

BIBLIOGRAPHY

NORMATIVE DOCUMENTS

[1] Sun Microsystems. RFC 1094. “NFS. Network File System Protocol specification”.
|ETF. 1989. http://www.ietf.org/rfc/rfc1094.txt.

[2] B. Callaghan, B. Pawlowski, and P. Staubach. RFC 1813. “NFS Version 3 Protocol
Specification”. IETF. Jun 1995. http://www.ietf.org/rfc/rfc1813.txt.

[3] Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. Jensen. RFC 2518.
“HTTP Extensions for Distributed Authoring— WEBDAV”. IETF. 1999.
http://www.ietf.org/rfc/rfc2518.txt.

[4] G. Clemm, J. Amsden, T. Ellison, C. Kaler, and J. Whitehead. RFC 3253.
“Versioning Extensions to WebDAV (Web Distributed Authoring and
Versioning)”. IETF. 2002. http://www.ietf.org/rfc/rfc3253.txt.

[5] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eidler, and D.
Noveck. RFC 3530. “Network File System (NFS) version 4 Protocol”. IETF.
2003. http://www.ietf.org/rfc/rfc3530.txt.

[6] G. Clemm, J. Reschke, E. Sedlar, and J. Whitehead. RFC 3744. “Web Distributed
Authoring and Versioning (WebDAV) Access Control Protocol”. IETF. 2004.
http://www.ietf.org/rfc/rfc3744.txt.

[7] “Data Encryption Standard (DES)”. FIPSPUB. 46. U.S. Department of commerce.
National Institute of Standards and Technology. Jan 1977.

[8] “Announcing the Advanced Encryption Standard (AES)”. FIPSPUB. 197. National
Institute of Standards and Technology. Nov 2001.

[9] Java Cryptography Extension (JCE) for the Java 2 DK, v 1.4.
http://java.sun.com/productg/jce.

[10] Tim Lindholm and Frank Y ellin. The Java™ Virtual Machine Specification (2nd
Edition). Apr 99. Addison-Wesley Professional. 0201432943.

[11] Bill Venners. The ServiceUl APl Specification, v. 1.1a. Jun 2005.
http://www.artima.com/jini/serviceui/Spec.html.

[12] Open Distributed Processing. Reference Model. 10746. 1SO/IEC. 1995.

ARTICLES

[13] Paul Leach and Dan Perry. “CIFS: A Common Internet File
System”. Microsoft Interactive Developer magazine. Nov 1996.
http://www.microsoft.com/mind/1196/cifs.asp.

144

http://www.ietf.org/rfc/rfc1094.txt
http://www.ietf.org/rfc/rfc1813.txt
http://www.ietf.org/rfc/rfc2518.txt
http://www.ietf.org/rfc/rfc3253.txt
http://www.ietf.org/rfc/rfc3530.txt
http://www.ietf.org/rfc/rfc3744.txt
http://java.sun.com/products/jce
http://www.artima.com/jini/serviceui/Spec.html
http://www.microsoft.com/mind/1196/cifs.asp

[14] Richard Sharpe. Just what is SVIB?. Oct 2002.
http://samba.org/cifs/docs/what-is-smb.html.

[15] M. Satyanarayanan. “Coda: a highly available file system for a
distributed workstation environment” . Wor kstation operating systems:
proceedings of the Second Workshop on Workstation Operating Systems
(WWOSHI), September 27--29, 1989, Pacific Grove, CA. 114-116.
http://ieeexplore.ieee.org/iel 5/267/3322/00109279.pdf. IEEE Computer Society
Press. 1989. 0-8186-2003-X. 0-8186-5003-6 (microfiche).

[16] M. Satyanarayanan, James J. Kistler, Puneet Kumar, Maria E. Okasaki, Ellen
H. Siegel, and David C. Steere. “Coda: A Highly Available File System for a
Distributed Workstation Environment” . |IEEE Transactions on Computers. 39 (4).
447-459. 1990.

[17] Ann L. Chervenak, Bill Ahcock, Carl Kesselman, Darcy Quesnel, lan Foster, Joe
Bester, John Bresnahan, Sam Meder, Steven Tuecke, and Veronika Nefedova.
“Data Management and Transfer in High-Performance Computational Grid
Environments’. Parallel Computing Journal. 28 (5). May 2002. 749-771.
http://www.globus.org/research/papers/dataM gmt.pdf.

[18] Asad Samar, Bill Allcock, Brian Tierney and Heinz Stockinger, lan
Foster, and Koen Holtman. “File and Object Replication in Data
Grids’. Journal of Cluster Computing. 5(3). 305-314. Sep 2002.
http://www.globus.org/research/papers/FileRepCluster02.pdf.

[19] Gurmeet Singh, Shishir Bharathi, Ann Chervenak, Ewa Deelman, Carl
Kesselman, Mary Manohar and Sonal Patil, and Laura Pearlman. “A
Metadata Catalog Service for Data Intensive Applications’. SC2003:
Igniting Innovation. Phoenix, AZ, November 15--21, 2003. ACM
Press and IEEE Computer Society Press. 2003. 1-58113-695-1.
http://www.globus.org/alliance/publications/papers/mcs_sc2003.pdf.

[20] Anand Natrgjan, Marty A. Humphrey, and Andrew S. Grimshaw. “Grids:
Harnessing Geographically-Separated Resources in a Multi- Organisational
Context”. High Performance Computing Systems. Jun 2001.

[21] Dgjan S. Milgjicic, Vana Kalogeraki, Rajan Lukose, Kiran Nagaragja, Jim Pruyne,
Bruno Richard, Sami Rollins, and Zhichen Xu. Peer-to-Peer Computing. Internal
HP report. Mar 2002.

[22] Anand Natrgjan, Anh Nguyen-Tuong, Marty A. Humphrey, and Andrew S.
Grimshaw. The Legion Grid Portal. Grid Computing Environments 2001,
Concurrency and Computation: Practice and Experience. 2001.

[23] Markus Lorch. Symphony - A Java-based Composition and Manipulation
Framework for Computational Grids. Thesis Document, University of Applied
Sciences in Albstadt-Sigmaringen. Jul 2002.

[24] Kandle Kulish, Jerry Perez, and Phil Smith. Multivariate Minimization Using Grid
Computing. Workshop on Grid Applications and Programming Tools. Jun 2003.
Seattle, WA, USA.

145

http://samba.org/cifs/docs/what-is-smb.html
http://ieeexplore.ieee.org/iel5/267/3322/00109279.pdf
http://www.globus.org/research/papers/dataMgmt.pdf
http://www.globus.org/research/papers/FileRepCluster02.pdf
http://www.globus.org/alliance/publications/papers/mcs_sc2003.pdf

[25] Peter J. Braam. “File Systems for Clusters from a Protocol Perspective’. Second
Extreme Linux Topics Workshop. Jun 1999. Monterey CA.

[26] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. “The Google File
System”. 19th ACM Symposium on Operating Systems Principles. 2003.

[27] R. Rivest, A. Shamir, and L. Adleman. “A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems’. Communications of the ACM. 21 (2). 120 - 126.
1978.

[28] Sun Microsystems. Build a Compute Grid with Jini ™
Technology. Jini™ Technology White Paper. Dec 2004.
http://www.jini.org/whitepapers/JINI_ComputeGrid_WP_FINAL .pdf.

[29] Carlos Queiroz, Bruno Souza, and Einar Saukas. Beyond Web Services. Combining
Jini™ Network Technology and “Project JXTA” to Take Advantage of Edge
Computing. JavaOne, Sun's 2003 Wor|dwide Java Developer Conference.

[30] Michael Sobolewski. “Federated P2P Servicesin CE Environments’. Advancesin
Concurrent Engineering. 13-22. A.A. Balkema Publishers. 2002. 90-5809-502-9.

[31] Michael Sobolewski. “FIPER: The Federated S2S Environment”.
JavaOne, Sun's 2002 Worldwide Java Developer Conference. 2002.
http://servlet.java.sun.com/javaone/sf 2002/conf/sessi ong/display-2420.en.j sp.

[32] R. Kolonay and Michael Sobolewski. “Grid Interactive Service-oriented
Programming Environment”. 97-102. Concurrent Engineering: The Worldwide
Engineering Grid. Tsinghua Press and Springer Verlag. 2004. 7-302-08802-0.

[33] Sekhar Soorianarayanan and Michael Sobolewski. “Monitoring Federated Services
in CE”. Concurrent Engineering: The Worldwide Engineering Grid. 89-95.
Tsinghua Press and Springer Verlag. 2004. 7-302-08802-0.

[34] Douglas Thain, Todd Tannenbaum, and Miron Livny. “Condor and the Grid”.
Grid Computing: Making The Global Infrastructure a Reality. John Wiley. Fran
Berman. Anthony J.G. Hey. Geoffrey Fox. 2003. 0-470-85319-0.

[35] lan Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. “Grid Services for
Distributed System Integration”. Computer. 35. 6. 37—46. Jun 2002. 0018-9162.
http://csdl.computer.org/dl/mags/co/2002/06/r6037.pdf .

[36] Vivek Khurana, Max Berger, and Michael Sobolewski. “A Federated Grid
Environment with Replication Services’. Next Generation Concurrent
Engineering. Omnipress. 2005. 0-9768246-0-4.

[37] Michael Sobolewski, Sekhar Soorianarayanan, and Ravi-Kiran Malladi Venkata.
“Service-Oriented File Sharing”. CII T conference (communications,internet and
information technology). 633-639. Nov 2003.

[38] Robert Lupton, F. Miller Maley, and Neal Y oung. “Data Collection for the Sloan
Digital Sky Survey—A Network-Flow Heuristic”. Journal of Algorithms. 27. 2.
339-356. May 1998.

[39] Eva Arderiu Ribera. “LHC Distributed Data Management”. CHEP 98, Chicago. Nov
1998. http://wwwinfo.cern.ch/asd/rd45/papers/proc_108.ps.

146

http://www.jini.org/whitepapers/JINI_ComputeGrid_WP_FINAL.pdf
http://servlet.java.sun.com/javaone/sf2002/conf/sessions/display-2420.en.jsp
http://csdl.computer.org/dl/mags/co/2002/06/r6037.pdf
http://wwwinfo.cern.ch/asd/rd45/papers/proc_108.ps

[40] Max Berger and Michael Sobolewski. “SILENUS - A federated service-oriented
approach to distributed file systems’. Next Generation Concurrent Engineering.
Omnipress. 2005. 0-9768246-0-4.

[41] Danny Dolev, Joe Halpern, and H. Raymond Strong. “On the possibility and
impossibility of achieving clock synchronization”. STOC '84: Proceedings of the
sixteenth annual ACM symposium on Theory of computing. 1984. 504-511. ACM
Press. 0-89791-133-4.

ie Lamport. “Time, Clocks, and the Ordering of Eventsin a Distribut
[42] Ledlie L “Time, Clocks, and the Ordering of E in a Distributed
System”. Communications of the ACM. 21. 7. 558-565. Jul 78.

[43] Friedemann Mattern. “Virtual time and global clocksin distributed systems”.
Workshop on Parallel and Distributed Algorithms. 215-226. 1989.

[44] Douglas S. Santry, Michael J. Feeley, Norman C. Hutchinson, Alistair C. Veitch,
Ross W. Carton, and Jacob Ofir. “Deciding when to forget in the Elephant
file system”. Symposium on Operating Systems Principles. 110-123. 1999.
http://www.stanford.edu/class/cs240/readings/p110-santry.pdf.

[45] Zachary N. J. Peterson, Randal Burns, Joe Herring, Adam Stubblefield, and Aviel D.
Rubin. “ Secure Deletion for aVersioning File System”. Proceedings of File and
Sorage Technology (FAST). USENIX. 2005.

[46] J. G. Steiner, B. Clifford Neuman, and J. |. Schiller. “Kerberos: An Authentication
Service for Open Network Systems’. Proceedings of the Winter 1988 Usenix
Conference. 191-201. Feb 1988.

ONLINE RESOURCES

[47] Gnutella Protocol Development. http://www.the-gdf.org/.
[48] OpenAFS. http://www.openafs.org.
[49] Globus Alliance. http://www.globus.org.

[50] Sybase Avaki Ell.
http://www.sybase.com/products/devel opmentintegration/avakieii/
distributedarchitecture.

[51] Lustre. http://www.lustre.org.

[52] Libgerypt. http://www.gnupg.org.

[53] Sung Kim. WEB-DAV Linux File System(davfs2). http://dav.sourceforge.net/.

[54] Knuth reward check. http://en.wikipedia.org/wiki/Knuth_reward check.

[55] Sun Microsystems. Java Technology. http://java.sun.com.

[56] IBM. Java technology. http://www-128.ibm.com/devel operworks/java.

[57] Apple Computer. Java for Mac OS X. http://www.apple.com/macosx/features/javal.

147

http://www.stanford.edu/class/cs240/readings/p110-santry.pdf
http://www.the-gdf.org/
http://www.openafs.org
http://www.globus.org
http://www.sybase.com/products/developmentintegration/avakieii/distributedarchitecture
http://www.sybase.com/products/developmentintegration/avakieii/distributedarchitecture
http://www.lustre.org
http://www.gnupg.org
http://dav.sourceforge.net/
http://en.wikipedia.org/wiki/Knuth_reward_check
http://java.sun.com/
http://www-128.ibm.com/developerworks/java
http://www.apple.com/macosx/features/java/

[58] Kaffe.org. http://www.kaffe.org/.

[59] Java Technology. http://www.java.com.

[60] Java 2 Platform, Micro Edition (J2ME). http://java.sun.com/j2me.
[61] JavaServer Pages Technology. http://java.sun.com/products/jsp/.
[62] Java Serviet Technology. http://java.sun.com/products/serviet/.

[63] Jim Driscoll. Jim Driscoll's Blog. Servlet History.
http://weblogs.java.net/blog/driscoll/archive/2005/12/serviet_history 1.html.

[64] Phil Bishop. IncaX. http://www.incax.com.
[65] IXTA. http://www.jxta.org/.

[66] Peter Deutsch. The Eight Fallacies of Distributed Computing.
http://today.java.net/jag/Fallacies.html.

[67] Sun Microsystems, Inc.. System Administration Guide:
Security Services. Using UNIX Permissions to Protect Files.
http://docs.sun.com/app/docs/doc/816-4557/6maosrje8?0=ACL & a=view.

[68] Keith Lea. The Java is Faster than C++ and C++ Sucks Unbiased Benchmark.
http://kano.net/javabench/.

[69] Soan Digital Sky Survey. http://www.sdss.org/.

[70] Peter H. Dana. Global Positioning System Overview.
http://www.col orado.edu/geography/gcraft/notes/gps/gps _f.html.

BOOKS

[71] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Principles and
Paradigms. Prentice Hall. Jan 2002. 0130888931.

[72] Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and Source Codein
C, Second Edition. Wiley. Oct 1995. 0471117099.

[73] Charlie Kaufman, Padia Perlman, and Mike Spencer. Network Security: PRIVATE
Commincation in a PUBLIC World. Prentice Hall. 2002. 0-13-046019-2.

[74] Jan Newmarch. A Programmer's Guide to Jini Technology. Apress. Nov 2000.
1893115801.

[75] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems:
Concepts and Design. Addison Wesley. May 2005. 0321263545.

[76] Will Willis, David Watts, and Tillman Strahan. Windows 2000 System
Administration Handbook. Addison-Wesley Professional. Dec 2000. 0130270105.

148

http://www.kaffe.org/
http://www.java.com
http://java.sun.com/j2me
http://java.sun.com/products/jsp/
http://java.sun.com/products/servlet/
http://weblogs.java.net/blog/driscoll/archive/2005/12/servlet_history_1.html
http://www.incax.com
http://www.jxta.org/
http://today.java.net/jag/Fallacies.html
http://docs.sun.com/app/docs/doc/816-4557/6maosrje8?q=ACL&a=view
http://kano.net/javabench/
http://www.sdss.org/
http://www.colorado.edu/geography/gcraft/notes/gps/gps_f.html

APPENDIX A. REFERENCE

Package sorcer.silenus.core
This package defines the core interfaces that are needed to use the SILENUSfile
system.

Class Bsuid

Class to handle UUIDs for objects stored in a byte store.

Synopsis

package sorcer.silenus.core
public class Bsuid inplements Serializable {

/1 Public Static Methods

public static Bsuid frontring(java.lang. String nane);
public static Bsuid nullBsuid();

public static Bsuid randonBsui d();

/1 Public Methods

publ i c bool ean equal s(j ava. | ang. Cbj ect obj);
public int hashCode();

public String toString();

Methodsinherited from java.lang.Object: cl one, equal s,final i ze,
get Cl ass, hashCode,notify,noti fyAl |l ,toString,wait
Version
$Revision: 1.2 $ $Date: 2006/09/02 19:26:36 $
Snce
Nov 22, 2005

Inheritance Path. java.lang.Object-> sorcer.silenus.core.Bsuid

equals(Object)

149

Synopsi s: public bool ean equal s(j ava. |l ang. Obj ect obj);

fromString(String)

Synopsi s: public static Bsuid fronString(java.lang. String nane);

Parameters

name
the string to parse
return
aBsuid object, if possible
Triesto create a Bsuid from a given String.

hashCode()

Synopsi s: public int hashCode();

nullBsuid()

Synopsi s: public static Bsuid nullBsuid();

Parameters

return
the null Bsuid.
Returns the Null Bsuid. The Null Bsuid represents no object.

randomBsuid()

Synopsi s: public static Bsuid randonBsui d();

150

Parameters

return
avalid Bsuid.
Creates arandom Bsuid.

toString()

Synopsi s: public String toString();

Parameters

return
a String representation
Creates a String representation for this Bsuid.
This representation can be parsed withf rontSt ri ng(j ava. | ang. String)

| nterface ByteStore

Javainterface to a ByteStore.

Synopsis

package sorcer. sil enus. core;
public interface ByteStore {

/1 Public Methods
public ByteStore. Byt eSequenceCreat ed createByt eSequence(sorcer. silenus. co\
re.Bsui d want edUl D,

net.jini.core.tra\
nsaction. server. Server Transacti on transacti on,
java.util.Map exp\
ect edMet adat a)
throws java.rn . Renot eExcepti on;

151

public ByteStore. Byt eSequenceCreat ed createByt eSequence(sorcer. sil enus. co\
re. Bsui d want edUl D,

net.jini.core.tra\
nsaction. server. Server Transacti on transacti on,

java.util.Mp exp\
ect edMet adat a,

sorcer. sil enus. co\
re. | nput Fi |l eChannel Accessor fil eData)

throws java.rm . Renot eExcepti on;
public | nputFileChannel Accessor getByteSequence(sorcer. silenus. core. Bsui d\
ui d)

throws java.io.| CException
public String getFileAttribute(sorcer.silenus.core.Bsuid uid
java.lang. String attribute)
throws java.io.| CException
public Servicel D getProviderID() throws java.rm .RenoteException
public Collection getSupportedAttributes() throws
java.rm . Renot eExcepti on

Version
$Revision: 1.2 $ $Date: 2006/09/02 19:26:36 $
Snce
Nov 15, 2005
See Also
sorcer. sil enus. core. SorcerByteStore
Inheritance Path. sorcer.silenus.core.ByteStore

createByteSequence(Bsuid, ServerTransaction, Map)

Synopsi s: public ByteStore. Byt eSequenceCreat ed creat eByt eSequence(sorcer. si\
| enus. core. Bsui d want edUl D,

net.jini.\

core.transaction. server. Server Transacti on transacti on,
java. util\

152

. Map expect edMet adat a)
throws java.rm . Renot eExcepti on;

Parameters

want edUl D
hold the requested Bsuid. May be null. If it is given, the bswill try to create an object
with this uuid, but may always refuse and create a different one.
transacti on
the transaction this upload is under. May be null. If used, the BS will report if the
upload succeds. If the transaction fails the newly created file will be deleted.
expect edMet adat a
provides some expected properties for the byte sequence. May be
null. If the properties of the uploaded file do not match the ones
given here then the byte sequence will be rejected. Please check
sorcer. silenus. core. Fil eSt or eConst ant s for possible values. The
bytestore will very likely support thingslike ATTR_SIZE and ATTR_SHAL.
return
there parameters for this byte sequence.
Exceptions

Renot eExcepti on
If aremote 1O error occurs.
See Also
sorcer.silenus.core. Fil eStoreConstants,
sorcer. silenus. core. ByteStore. Byt eSequenceCr eat ed
Creates a new Byte Sequence on the byte Store.

createByteSequence(Bsuid, ServerTransaction, Map,
I nputFileChannel A ccessor)

Synopsi s: public ByteStore. Byt eSequenceCreated createByt eSequence(sorcer. si\
| enus. core. Bsui d want edUl D,

153

net.jini.\
core.transaction.server. Server Transacti on transacti on,
java.util\
. Map expect edMet adat a,
sorcer. si\
| enus. core. | nput Fi | eChannel Accessor fil eDat a)
throws java.rm . Renot eExcepti on;

Parameters

want edUl D
areguested uid. May be null.
transacti on
atransaction object. May be null.
expect edMet adat a
expected metadata. If given, the byte sequence must match this data or it will be
rejected.
fileData
areadable byte sequence to initialize this byte sequence to. May be null.
return
The Bsuid of the new byte sequence. The writeableByteSequence isfilled in if the
fileData was null.
Exceptions

Renot eExcepti on
If aremote 10 error occurs.
See Also
cr eat eByt eSequence(sorcer. sil enus. core. Bsui d,
net.jini.core.transaction.server. Server Transacti on,
java.util. Mp)
creates a bytesequence and fills it with the data given.

getByteSequence(Bsuid)

Synopsi s: public I nputFil eChannel Accessor getByteSequence(sorcer. silenus. co\

154

re.Bsuid uid)

throws java.io.| OException;

Parameters
uid
the requested byte sequence.
return

areable byte sequence that can be used to accessthisfile.
Exceptions

| OException
if any 10 errors occur.
Retrieve an accessor to the byte sequence matching the given Bsuid.

getFileAttribute(Bsuid, String)

Synopsi s: public String getFileAttribute(sorcer.silenus.core.Bsuid uid,
java.lang. String attribute)
throws java.io.| CeException;

Parameters
uid
the Bsuid of the byte sequence.
attribute
the requested attribute.
return
value for this attribute or null.
Exceptions

| OException
if any 10 errors occur.
Retrieves an intrisic attribute for a stored byte sequence.

155

getProviderID()

Synopsi s: public Servicel D getProviderlD() throws
java.rm . Renot eExcepti on;

Parameters

return
the Servicel D of this provider
Exceptions

Renot eExcepti on
If aremote 10 error occurs.
Standard method to retrieve the UID of the provider.

getSupportedAttributes()

Synopsi s: public Collection getSupportedAttributes() throws
java.rm . Renot eExcepti on;

Parameters

return
a Collection of attribute names.
Exceptions

Renot eExcepti on
If aremote 10 error occurs.
Retrieves alist of intrinsic attributes suported on this byte store.

Class ByteStore.ByteSequenceCreated

Data class for created byteSequences.

156

Synopsis

package sorcer. sil enus. core. ByteStore;
public static class ByteStore.ByteSequenceCreated inplenments Serializable {

/1 Public Constructors
public ByteStore. Byt eSequenceCreat ed(sorcer. sil enus. core. Qut put Fi | eChanne\
| Accessor newW it eabl eByt eSequence,

sorcer. sil enus. core. Bsuid newBsui d);

/1 Public Methods
public Bsuid getBsuid();
publi ¢ QutputFil eChannel Accessor get Wi teabl eByt eSequence();

Methodsinherited from java.lang.Object: cl one, equal s,finali ze,
get d ass, hashCode,notify,notifyAll,toString,wait

Inheritance Path. javalang.Object->
sorcer.silenus.core.ByteStore.ByteSequenceCreated

ByteStore.ByteSequenceCreated(OutputFileChannel Accessor,
Bsuid)

Synopsi s: public ByteStore. Byt eSequenceCreat ed(sorcer. sil enus. core. Qut put Fi \
| eChannel Accessor newW it eabl eByt eSequence

sorcer.sil enus. core. Bsui d ne\
wBsui d) ;

Parameters

neww it eabl eByt eSequence
the writeable byte sequence.
newBsui d
Bsuid of that sequence.
Creates a new ByteSequenceCreated object.

157

getBsuid()

Synopsi s: public Bsuid getBsuid();

Parameters

return
Returns the bsuid.
Accessor method for property bsuid.

getWriteabl eByteSequence()

Synopsi s: public Qutput Fil eChannel Accessor get Wit eabl eByt eSequence();

Parameters

return
Returns the writeabl eByteSequence.
Acessor method for property writeableByteSequence.

I nterface Coordinator

Javainterface to the coordinator part of the SILENUS facade.
These operations are actually to be executed on the facade service itself rather
than on the client

Synopsis

package sorcer.sil enus. core;

public interface Coordinator inplenents Renote {
/1 Public Methods

public Servi ceContext downl oadFi | e(sorcer. base. Servi ceCont ext context)
throws java.rn . Renot eExcepti on,

158

Servi ceUnavai | abl eExcepti on;
public ServiceContext registerForEvents(sorcer. base. Servi ceContext pc)
throws java.rm . Renot eExcepti on,
net.jini.core.l ease. LeaseDeni edExcepti on;
public ServiceContext replicateFile(sorcer.base. Servi ceContext pc)
throws java.rm . Renot eExcepti on;
public ServiceContext uploadFile(sorcer. base. Servi ceContext context)
throws java.rn . Renot eException,
Servi ceUnavai | abl eExcepti on;

Inheritance Path. sorcer.silenus.core.Coordinator

downloadFile(ServiceContext)

Synopsi s: public ServiceContext downl oadFi | e(sorcer. base. Servi ceCont ext con\
text)

throws java.rm . Renot eExcepti on,
Servi ceUnavai | abl eExcepti on;

Parameters

cont ext
the parameters as a ServiceContext
return
the result as a ServiceContext
Exceptions

Renot eExcept i on
if aremoteio error occurs.
Ser vi ceUnavai | abl eExcepti on
if not all required services are available.
See Also
downl oadFi | e(sorcer. sil enus. core. Msui d)
download afile.

159

registerForEvents(ServiceContext)

Synopsi s: public ServiceContext registerForEvents(sorcer. base. Servi ceCont ex\
t pc)

throws java.rm . Renot eExcepti on,
net.jini.core.lease. LeaseDeni edExcepti on;

Parameters

pc
the parameters as a ServiceContext
return
the result as a ServiceContext
Exceptions

Renot eExcepti on
if aremoteio error occurs.
LeaseDeni edExcepti on
if the lease requested cannot be granted.
See Also
regi ster ForEvents(net.jini.core.event. Renot eEvent Li st ener,

| ong)
register for file store events.

replicateFile(ServiceContext)

Synopsi s: public ServiceContext replicateFil e(sorcer. base. Servi ceCont ext pc\

)

throws java.rm . Renot eExcepti on;

160

Parameters

pc
the parameters as a ServiceContext
return
the result as a ServiceContext
Exceptions

Renot eExcepti on
if aremoteio error occurs.
See Also
replicateFile(sorcer.silenus.core. Msuid,
net.jini.core.l ookup. Servicel D)
Initiate file replication.

uploadFile(ServiceContext)

Synopsi s: public ServiceContext uploadFil e(sorcer. base. Servi ceContext conte\
xt)

throws java.rm . Renot eExcepti on,
Servi ceUnavai | abl eExcepti on;

Parameters

cont ext
the parameters as a ServiceContext
return
the result as a ServiceContext
Exceptions

Renot eExcepti on
if aremoteio error occurs.

161

Servi ceUnavai | abl eExcepti on
if not all required services are available.
See Also
upl oadFi | e(sorcer.sil enus.core. Msuid, java.util.Mp),
upl oadFi | e(sorcer.sil enus.core. Msuid, java.util.Mp,
sorcer.silenus. core. | nput Fi | eChannel Accessor)
uploads afile.

Interface FileStore

Javainterface to aFileStore.

Synopsis

package sorcer. sil enus. core;
public interface FileStore {

/1 Public Methods
publ i ¢ Met adat aSt or e. NodeCr eat ed creat eNode(j ava. util.Map netadat a)

throws Servi ceUnavail abl eExcepti on,

java.rm . Renpt eExcepti on;
public void del et eNode(sorcer.sil enus. core. Msuid node,
bool ean recursive)

throws ServiceUnavai |l abl eException, java.io.|OException;

public I nputFileChannel Accessor downl oadFi | e(sorcer. sil enus. core. Msuid no\
de)

throws Servi ceUnavail abl eExcepti on,
java.rm . Renpt eExcepti on;
public Map expandNode(sorcer. sil enus. core. Msuid node)
throws Servi ceUnavail abl eExcepti on,
java.rm . Renot eExcepti on;
public Lease registerForEvents(net.jini.core.event.RenoteEventListener |i\
st ener,

| ong desiredLease)

throws net.jini.core.lease.LeaseDeni edExcepti on,
java.rm . Renot eExcepti on;

162

public bool ean replicateFile(sorcer.silenus.core. Msuid nsuid,
net.jini.core.l ookup. Servicel D byteStore)

throws java.rm . Renot eExcepti on;

public Map setAttributes(sorcer.silenus.core.Muid uuid,
java.util.Map newAttri butes)
throws Servi ceUnavail abl eExcepti on,
java.rm . Renot eExcepti on;

publ i ¢ Qut put Fi | eChannel Accessor upl oadFil e(sorcer. sil enus. core. Msui d uid\

java.util.Map netadata)
throws Servi ceUnavai |l abl eExcepti on,
java.rm . Renot eExcepti on;
public void upl oadFil e(sorcer.silenus.core. Msuid uid,
java.util.Map netadat a,
sorcer. sil enus. core. | nput Fi | eChannel Accessor fileD\

at a)
throws Servi ceUnavail abl eExcepti on,
java.rm . Renpt eExcepti on;
}
Version
$Revision: 1.4 $ $Date: 2006/10/12 01:41:34 $
See Also
sorcer.silenus. core. SorcerFil eStore
Snce
Nov 15, 2005
Inheritance Path. sorcer.silenus.core.FileStore
createNode(Map)

Synopsi s: public MetadataStore. NodeCreated createNode(java.util.Mp netadat\
a)

throws Servi ceUnavail abl eExcepti on,
java.rm . Renot eExcepti on;

163

Parameters

nmet adat a
the desired node metadata.
return
aNodeCreated object containing the actual metadata that was set and the msuid of the
new node.
Exceptions

Servi ceUnavai | abl eExcepti on
not all services required to process this request are available.
Renot eExcepti on
If aremote 10 error occurs.
Creates a new node with the given metadata.
A new node id will be automatically created.

deleteNode(Msuid, boolean)

Synopsi s: public void del et eNode(sorcer. silenus. core. Msuid node,
bool ean recursive)
throws Servi ceUnavail abl eExcepti on,
java.io. | OExcepti on;

Parameters

node
the node to delete.
recursive
whether to delete all child nodes.
If set to true, all child nodes and their child nodes, etc. will be deleted.

164

If set to false, the node must not have any child nodes or an |OException will
occur.
Exceptions

Servi ceUnavai | abl eExcepti on
not all services required to process this request are available.
| OException
If an 10 error occurs.
See Also
del et eNode(sorcer. sil enus. core. Msui d, bool ean)
Deletes a node from this metadata store.
Deleting a node essentially sets most attributes to null.

downloadFile(Msuid)

Synopsi s: public I nputFileChannel Accessor downl oadFi | e(sorcer.silenus.core.\
Msui d node)

t hrows Servi ceUnavail abl eExcepti on,
java.rm . Renot eExcepti on;

Parameters

node
theid of the node to download.
return
a Readabl eByteSequence with access to the file content.
Exceptions

Servi ceUnavai | abl eExcepti on
not all services required to process this request are available.
Renot eExcepti on
If aremote 10 error occurs.
Triesto download the file with the given Msuid.

165

This function evaluates the location attribute, finds a suitable ByteStore and tries
to retrieve the file contents from there.

expandNode(Msuid)

Synopsi s: public Map expandNode(sorcer. sil enus. core. Msui d node)
t hrows Servi ceUnavail abl eExcepti on,
java.rm . Renot eExcepti on;

Parameters

node
the node to get information about
return
the node metadata.
Exceptions

Servi ceUnavai | abl eExcepti on
not all services required to process this request are available.
Renot eExcepti on
If aremote 10 error occurs.
Gets the attributes for a given node.
Thisisthe basic function to retrieve information stored in the SILENUS file
system.

registerForEvents(RemoteEventListener, long)
Synopsi s: public Lease registerForEvents(net.jini.core.event.RenoteEventLi s\

tener listener,

| ong desiredLease)
throws net.jini.core.|ease. LeaseDeni edExcepti on,
java. rm . Renot eExcepti on;

166

Parameters

listener
the listener to register. Should be a remote proxy.
desiredLease
desired length of the lease.
return
a Lease object that can be used to renew the lease.
Exceptions

LeaseDeni edExcepti on
the lease request was denied.
Renot eExcepti on
If aremote 1O error occurs.
See Also
sorcer.silenus. core. Fil eStoreEvent
Register alistener for FileStoreEvents.
Thisfunction is used to register listeners on events. In the case of a change, a
sorcer.silenus.core. Fil eStoreEvent issent.

replicateFile(Msuid, Servicel D)

Synopsi s: public bool ean replicateFile(sorcer.silenus.core. Msuid msuid,
net.jini.core.l ookup. Servicel D byt eS\
tore)
throws java.rm . Renot eExcepti on;

Parameters

nmsui d
Uuid of thefile to replicate
byt eSt ore
Id of the bytestore to target. May be null.

167

return
trueif the file was sucessfully replicated.
Exceptions

Renot eExcepti on
If aremote |O error occurs.
Initiate replication of agiven file to a given bytestore.

setAttributes(Msuid, Map)

Synopsi s: public Map setAttributes(sorcer.silenus.core. Msuid uuid,
java.util.Map newAttri butes)
t hrows Servi ceUnavail abl eExcepti on,
java.rm . Renot eExcepti on;

Parameters

uui d
theid of the node to change.
newAttri butes
set of new attributes. Use null to delete an attribute
return
the complete set of attributes after the change.
Exceptions

Servi ceUnavai | abl eExcepti on
not all services required to process this request are available.
Renot eExcepti on
If aremote 10 error occurs.
Sets the attributes for a given Msuid to new values.
This function will only modify the attributes given as parameters. To delete an
attribute, set it to null.

uploadFile(Msuid, Map)

168

Synopsi s: public Qutput Fil eChannel Accessor upl oadFil e(sorcer.sil enus.core. M
suid uid,

java.util.Map netadat\
a)
throws Servi ceUnavail abl eExcepti on,
java.rm . Renpt eExcepti on;

Parameters

uid
the Msuid of the node to update or null for new nodes.
net adat a
the desired node metadata.
return
a WriteableByteSequence to fill in the file contents.
Exceptions

Servi ceUnavai | abl eExcepti on
not all services required to process this request are available.
Renot eExcepti on
If aremote 10 error occurs.
See Also
sorcer. sil enus. core. Qut put Fi | eChannel Accessor,
upl oadFi | e(sorcer.sil enus.core. Msuid, java.util.Mp,
sorcer. silenus. core. | nput Fi | eChannel Accessor)
Allows uploading of file datafor new and existing content nodes through push
file upload.
If the given uid is null, anew node id will be created.
If the given uid exisits, anew content version for this particular file will be
created.
A bytestore will be contacted and the location attribute filled in.
This method provides push file upload. It is the users responsibility to open the
WriteableByteSequence, add data, and close it again.

169

uploadFile(Msuid, Map, InputFileChannel Accessor)

Synopsi s: public void upl oadFil e(sorcer.silenus.core.Muid uid,
java.util.Map netadat a,
sorcer. sil enus. core. | nput Fi | eChannel Access\

or fileData)
t hrows Servi ceUnavail abl eExcepti on,
java.rm . Renot eExcepti on;
Parameters
uid
the Msuid of the node to update or null for new nodes.
net adat a
the desired node metadata.
fileData
a Readabl eByteSequence with access to the file contents.
Exceptions

Servi ceUnavai | abl eExcepti on
not all services required to process this request are available.
Renot eExcepti on
If aremote 10 error occurs.
See Also
sorcer. silenus. core. | nput Fi | eChannel Accessor,
upl oadFi | e(sorcer.silenus.core. Msuid, java.util.Map)
Allows uploading of file data for new and existing content nodes through pull file
upload.
If the given uid is null, anew node id will be created.
If the given uid exisits, anew content version for this particular file will be
created.
A bytestore will be contacted and the location attribute filled in.
This method provides pull file upload. It will automatically contact the file
content holder and retrieve the file from there.

170

| nterface FileStoreConstants

Constants for MetadataStore
This interface provides constants for MetadataStores. It isimplemented as an
interface for easy inclusion (implement this interface to use the constants).

Synopsis
package sorcer. sil enus. core;
public interface Fil eStoreConstants {

/1 Public Static Fields
public final static String ATTR_CH LDREN,

public final static String ATTR _CONTENTLASTMODI FI ED,
public final static String ATTR_CREATI ONDATE;

public final static String ATTR_FI LEVERSI ON,

public final static String ATTR_LOCATI ON,

public final static String ATTR_MAX COPI ES;

public final static String ATTR_MD5;

public final static String ATTR_METADATALASTMODI Fl ED,
public final static String ATTR_M N_COPI ES;

public final static String ATTR_NAME;

public final static String ATTR OPT_COPI ES;

public final static String ATTR ORI GNI ATOR;

public final static String ATTR_PARENT;

public final static String ATTR_SHA;

public final static String ATTR Sl ZE;

public final static String ATTR _TARCET;

public final static String ATTR_TYPE;

public final static String ATTR TYPE_WAS_SET_BY;
public final static String EV_CONTEXT_DURATI ON;
public final static String EV_CONTEXT_LEASE;

public final static String EV_CONTEXT_ LI STENER,
public final static String FS_CONTEXT_ATTRI BUTELI ST;
public final static String FS_CONTEXT_ATTRI BUTENANE;
public final static String FS_CONTEXT_ATTRI BUTES;
public final static String FS_CONTEXT_ATTRI BUTEVALUE;
public final static String FS_CONTEXT_CONTENT;

public final static String FS_CONTEXT_COLD ATTRI BUTES;

171

public final static String FS_CONTEXT_RECURSI VE;
public final static String FS_CONTEXT_SERVI CEl D
public final static String FS_CONTEXT_SUCCESS;
public final static String FS_CONTEXT_TRANSACTI ON;
public final static String FS_CONTEXT_UUI D;
public final static Map MAP_ATTR_ DI CGEST;
public final static String MDS_CONTEXT_CHANGELOG
public final static String MDS_CONTEXT_MsUl DS;
public final static String MDS_CONTEXT_TI MEVECTOR;
public final static String M METYPE DI RECTORY;
public final static String M METYPE_LI NK;
public final static String TYPE_SET_CONTENT,;
public final static String TYPE_SET_EXT;
public final static String TYPE_SET_OLDCONTENT;
public final static String TYPE_SET_USER;

}

Version

$Revision: 1.5 $ $Date: 2006/10/02 23:07:22 $
See Also

sorcer.silenus.metadatastore.M etadataStore,
sorcer.silenus.metadatastore. SORCERM etadataStore
Inheritance Path. sorcer.silenus.core.FileStoreConstants

ATTR_CHILDREN

Synopsis: public final static java.lang. String ATTR _CH LDREN

Attribute for children.
This attribute is read-only.
Datatype: Collection<Msuid>.

ATTR_CONTENTLASTMODIFIED

Synopsi s: public final static java.lang. String ATTR_CONTENTLASTMODI FI ED

attribute name for Last modified date.

172

Datatype: String

ATTR_CREATIONDATE

Synopsi s: public final static java.lang. String ATTR_CREATI ONDATE

attribute name for creation date.
Datatype: String

ATTR_FILEVERSION

Synopsis: public final static java.lang. String ATTR_FI LEVERSI ON

Attribute name for file version.
Datatype: String

ATTR_LOCATION

Synopsis: public final static java.lang. String ATTR_LOCATI ON

attribute name for location.
Datatype: Map<Servicel D, Bsuid>

ATTR_MAX_COPIES

Synopsi s: public final static java.lang. String ATTR_MAX_COPI ES

attribute for maximum number of available copies.
Datatype: long

ATTR_MD5

Synopsis: public final static java.lang.String ATTR _MD5

attribute name for MD5 checksum.

173

Datatype: String

ATTR_METADATALASTMODIFIED

Synopsi s: public final static java.lang. String ATTR_METADATALASTMODI FI ED

attribute name for Last modified date.
Datatype: String

ATTR_MIN_COPIES

Synopsis: public final static java.lang.String ATTR_M N_COPI ES

attribute for minimum number of available copies.
Datatype: long

ATTR_NAME

Synopsi s: public final static java.lang. String ATTR_NAMVE

attribute name for filename.
Datatype: String

ATTR_OPT_COPIES

Synopsis: public final static java.lang.String ATTR OPT_COPI ES

attribute for optimal number of available copies.
Datatype: long

ATTR_ORIGNIATOR

Synopsi s: public final static java.lang. String ATTR_ ORI GNl ATOR

attribute for originating metadata store.

174

Datatype: String
The originating store is the metadata store the file withh this uuid was last
changed on.

ATTR_PARENT

Synopsis: public final static java.lang. String ATTR_PARENT

attribute name for parent node.
Datatype: String

ATTR_SHA

Synopsis: public final static java.lang. String ATTR _SHA

attribute name for SHA 1 checksum.
Datatype: String

ATTR_SIZE

Synopsis: public final static java.lang. String ATTR SI ZE

attribute name for file size.
Datatype: String

ATTR_TARGET

Synopsis: public final static java.lang. String ATTR TARGET

target for SILENUS links.

Datatype: Msuid

This value stores the target of soft links in the SILENUS file system.
ATTR_TYPE should be set toM METYPE_LI NK.

175

ATTR_TYPE

Synopsi s: public final static java.lang. String ATTR TYPE

attribute name for mime type.
Datatype: String

ATTR _TYPE WAS SET BY

Synopsis: public final static java.lang. String ATTR TYPE_WAS_SET_BY

See Also
TYPE_SET_CONTENT, TYPE_SET_EXT, TYPE_SET_USER
who has set the mime type?
Datatype: String

EV_CONTEXT_DURATION

Synopsis: public final static java.lang. String EV_CONTEXT_DURATI ON

Context path to alease duration (long).

EV_CONTEXT_LEASE

Synopsi s: public final static java.lang. String EV_CONTEXT_LEASE

Context path to a net.jini.core.lease.Lease.

EV_CONTEXT_LISTENER

Synopsi s: public final static java.lang. String EV_CONTEXT_LI STENER

Context path to a net.jini.core.event. RemoteEventListener.

176

FS_ CONTEXT_ATTRIBUTELIST

Synopsi s: public final static java.lang. String FS_CONTEXT_ATTRI BUTELI ST

Context path to asingle file attribute.

FS_CONTEXT_ATTRIBUTENAME

Synopsi s: public final static java.lang. String FS_CONTEXT_ATTRI BUTENAME

Context path to a single file attribute name.

FS_CONTEXT_ATTRIBUTES

Synopsi s: public final static java.lang. String FS_CONTEXT_ATTRI BUTES

Context path to file attributes.

FS_ CONTEXT_ATTRIBUTEVALUE

Synopsi s: public final static java.lang. String FS_CONTEXT_ATTRI BUTEVALUE

Context path to a single file attribute name.

FS_CONTEXT_CONTENT

Synopsi s: public final static java.lang. String FS_CONTEXT_CONTENT

Contenxt path to file contents. Can be either a
sorcer. silenus. core. | nputFi | eChannel Accessor ora
sorcer. sil enus. core. Qut put Fi | eChannel Accessor.

FS CONTEXT OLD_ATTRIBUTES

177

Synopsis: public final static java.lang. String FS_CONTEXT_COLD ATTRI BUTES

Context path to old file attributes.

FS_CONTEXT_RECURSIVE

Synopsi s: public final static java.lang. String FS_CONTEXT_RECURSI VE

Context path to the recursive attribute of type java.lang.Boolean.

FS_CONTEXT_SERVICEID

Synopsis: public final static java.lang. String FS_CONTEXT_SERVI CEI D

Context path to a ServicelD.

FS_CONTEXT_SUCCESS

Synopsis: public final static java.lang. String FS_CONTEXT_SUCCESS

Context path to a bool.

FS_CONTEXT_TRANSACTION

Synopsis: public final static java.lang. String FS_CONTEXT_TRANSACTI ON

Context path to a net.jini.core.transaction.server.Server Transaction object.

FS CONTEXT _UUID

Synopsi s: public final static java.lang.String FS_CONTEXT_UU D

Context pathto afilesor cer . si | enus. core. Msui d.

MAP ATTR_DIGEST

178

Synopsis: public final static java.util.Map MAP_ATTR_DI GEST

mapping from attribute names for message digests to names common in java
security providers.

MDS CONTEXT _CHANGELOG

Synopsi s: public final static java.lang. String MDS_CONTEXT_CHANGELOG

Context path to afile store change log.

MDS CONTEXT_MSUIDS

Synopsis: public final static java.lang. String MDS_CONTEXT_MSUl DS

Context path to alist of Msuids.

MDS CONTEXT_TIMEVECTOR

Synopsi s: public final static java.lang. String MDS_CONTEXT_TI MEVECTOR

Context path to atime vector.

MIMETY PE_DIRECTORY

Synopsi s: public final static java.lang.String M METYPE_DI RECTORY

See Also
ATTR_TARGET
special mime type for directories. You can use thisto check if anodeisa
directory. Please note: Linksto directories will also have children.

MIMETYPE_LINK

179

Synopsi s: public final static java.lang. String M METYPE_LI NK

special mime type for links. A link can point to a directory or afile.

TYPE_SET_CONTENT

Synopsis: public final static java.lang. String TYPE_SET_CONTENT

type was set from file content.

TYPE_SET _EXT

Synopsis: public final static java.lang. String TYPE_SET_EXT

type was set from file extension.

TYPE_SET_OLDCONTENT

Synopsis: public final static java.lang. String TYPE_SET_OLDCONTENT

type was set from older fileversion content.

TYPE_SET_USER

Synopsi s: public final static java.lang.String TYPE_SET_USER

type was set by the user.

Class FileStoreEvent

This class represents events within the SILENUS file store system.
A file store event is sent everytime something changes to all interested parties.
Every file store event is designed so that is may be missed without implications.

Synopsis

package sorcer. sil enus. core;

180

public class FileStoreEvent extends RenoteEvent {

/1 Public Static Fields

public final static |ong ALl VE_EVENT,;

public final static |ong CREATI ON_FI LEDATA EVENT;
public final static | ong CREATI ON_ METADATA EVENT;
public final static | ong HAS SYNCHED_ EVENT;
public final static | ong UPDATE_FI LEDATA EVENT,;
public final static | ong UPDATE METADATA EVENT,;

/1 Public Constructors

public FileStoreEvent(net.jini.core.lookup. ServicelD sourceServi ce,
| ong segNum java.util.Map tineVec);

public FileStoreEvent(net.jini.core.lookup.ServicelD sourceService,
I ong eventI D, |ong seqNum
java.util.Set changedSourceltens,
java.util.Mp tinmeVec,
java.util.Map attrs);

/1 Public Methods

public Map get ChangedAttrs();
public Set getSourceltens();
public Map get Ti neVector ();

Methods inherited from net.jini.core.event.RemoteEvent: get | D,
get Regi strati onCbj ect, get SequenceNunber
Methodsinherited from java.util.EventObject: get Sour ce,t oStri ng
Methodsinherited from java.lang.Object: cl one, equal s,final i ze,
get Cl ass, hashCode, noti fy,notifyAll,wait
Version
$Revision: 1.2 $ $Date: 2006/09/02 19:26:36 $
Inheritance Path. javalang.Object-> java.util.EventObject->
net.jini.core.event. RemoteEvent-> sorcer.silenus.core.FileStoreEvent

FileStoreEvent(Servicel D, long, long, Set, Map, Map)

181

Synopsi s: public FileStoreEvent(net.jini.core.lookup. ServicelD sourceServic\
€,

I ong eventI D, |ong seqNum
java.util.Set changedSourceltens,
java.util.Mp tinmeVec,
java.util.Map attrs);

Parameters

sour ceServi ce
the servicel D of the service where the event occured.
event| D
type of the event. Please use the constants defined in this class.
segNum
the sequence number of the event. Should increase with every event. Thisisignored
in the SILENUS core components.
changedSour cel t ens
aset of Uuids of the file store items that have changed. Use this and the
sourceService to acquire additional information.
ti meVec
the timestamp for the change event.
attrs
the attributes that have changed during this event. Only defined if there is exactly one
source item.
Creates anew file store event.
This event can then be sent to all SILENUS listeners.

FileStoreEvent(Servicel D, long, Map)

Synopsi s: public FileStoreEvent(net.jini.core.|lookup. Servicel D sourceServic\
€,

| ong segNum
java.util.Map tinmeVec);

182

Parameters

sour ceServi ce
the serviceid of the servicethat isalive
seqNum
a sequence number. Should increase with every event. Thisisignored in the
SILENUS core components.
ti meVec
the timestamp at the originating service.
Generatesanew ALI VE_EVENT.

ALIVE_EVENT

Synopsi s: public final static |ong ALl VE_EVENT

Nothing has changed. Thisisjust to imform that the source nodeis alive.

CREATION_FILEDATA_EVENT

Synopsi s: public final static | ong CREATI ON_FI LEDATA EVENT

Actual byte data for a new file has been stored.

CREATION_METADATA_EVENT

Synopsis: public final static | ong CREATI ON_METADATA EVENT

Metadata for a new file has been created.

HAS SYNCHED_EVENT

183

Synopsi s: public final static | ong HAS_SYNCHED EVENT

Toinform al listeners that we have synched with /o else. In this case, sourceltem
will not be set, since there were multiple changes.

UPDATE_FILEDATA_EVENT

Synopsis: public final static | ong UPDATE_FI LEDATA EVENT

File content for an exisiting file has been changed.

UPDATE_METADATA_EVENT

Synopsis: public final static | ong UPDATE_METADATA EVENT

Metadata for an existing file has changed.

getChangedAttrs()

Synopsi s: public Map get ChangedAttrs();

Parameters

return
amap of attributes or null
Returns the attributes that have changed for sourceltem.
Thisisonly defined if thereis exactly one source item.

getSourceltems()

Synopsi s: public Set getSourceltens();

184

Parameters

return
aset of Uuids of the changed items or null.
Returns the sourceltems. The sourceltem is a set of Uuids of the files which have
changed.

getTimeV ector()

Synopsi s: public Map get Ti neVector () ;

Parameters

return
the time vector.
Returns the timeV ector. The timeV ector contains the timestamp of the event.

I nterface | nputFileChannel A ccessor

A readable byte sequence accessor. Thisclassis serializable. It contains all
information necesary to open a readable byte channel.

Synopsis
package sorcer.silenus.core
public interface InputFileChannel Accessor inplenments Serializable {

/1 Public Methods
public Fil eChannel openlnputFileChannel () throws java.io.| CException

}

Version
$Revision: 1.1 $ $Date: 2006/09/02 19:26:36 $

185

Snce
Nov 15, 2005
Inheritance Path. sorcer.silenus.core.lnputFileChannel A ccessor

openl nputFileChannel ()

Synopsi s: public FileChannel openlnputFil eChannel () throws
java.io.| OException;

Parameters

return
anewly created and opened readable byte channel.
Exceptions

| OException
if an 10 error occurs.
create the readable byte channel that is stored in this sequence.

Interface M etadataStore

Javainterface to a MetadataStore.

Synopsis

package sorcer. sil enus. core;
public interface MetadataStore {

/1 Public Methods
publ i c Met adat aSt or e. NodeCr eat ed creat eNode(java.util.Map attri butes,
net.jini.core.transaction. ser\
ver. Server Transacti on transacti on)
throws java.rm . Renot eExcepti on;
public void del et eNode(sorcer.silenus.core. Msuid node,
bool ean recursive) throws java.io.| OException;
public Map expandNode(sorcer. silenus. core. Msui d node)

186

throws java.rm . Renot eExcepti on;
public Servicel D getProviderlD() throws java.rm .RenoteException;
public Map getTimeVector() throws java.rm .RenoteException;
public Lease registerForEvents(net.jini.core.event.RenoteEventListener |i\
st ener,

| ong desiredLease)
throws net.jini.core.lease.LeaseDeni edExcepti on,
java.rm . Renot eExcepti on;
publ i c Met adat aSt or e. Met adat aSt or eChangelLog retri eveChangelLogSi nce(j ava. u\
til.Map tineVector)

throws java.rm . Renot eExcepti on;
public Collection retrieveLi stOf Al'l ActiveNodes() throws
java.rm . Renot eExcepti on;
publi c Map updat eNode(sorcer. sil enus. core. Msui d node,
java.util.Map newAttri butes,
java.util.Map ol dAttri butes,
net.jini.core.transaction.server. ServerTransacti on \
transaction)
throws java.rm . Renot eExcepti on;

Version
$Revision: 1.3 $ $Date: 2006/09/28 00:54:28 $
See Also
sorcer.sil enus. core. Sorcer Met adat aSt or e
Snce
Nov 15, 2005
Inheritance Path. sorcer.silenus.core.M etadataStore

createNode(Map, ServerTransaction)
Synopsi s: public Metadat aStore. NodeCreat ed createNode(java.util.Mp attribu\
tes,

net.jini.core.transac\
tion.server. Server Transacti on transacti on)

187

throws java.rm . Renot eExcepti on;

Parameters

attributes
the attributes desired.
transaction
a ServerTransaction if needed.
return
a NodeCreated object containing the actual attributes that where set and the Msuid of
the new object.
Exceptions

Renot eExcepti on
If aremote 1O error occurs.
creates a node.

deleteNode(Msuid, boolean)

Synopsi s: public void del et eNode(sorcer. silenus. core. Msui d node,
bool ean recursive)
throws java.io.| OException

Parameters

node
the node to delete.
recursive
whether to delete all child nodes.
If set to true, all child nodes and their child nodes, etc. will be deleted.

188

If set to false, the node must not have any child nodes or an |OException will
occur.
Exceptions

| OException
If an |O error occurs.
See Also
del et eNode(sorcer. sil enus. core. Msui d, bool ean)
Deletes a node from the file store.
This operationsis forwared to a metadata store.

expandNode(Msuid)

Synopsi s: public Map expandNode(sorcer. sil enus. core. Msuid node)
throws java.rm . Renot eException;

Parameters

node
the node id to expand
return
aMap<String,Object> with key-value pairs
Exceptions

Renot eExcepti on
If aremote 1O error occurs.
See Also
sorcer.silenus.core. Fil eStoreConstants
Returns metainformation for the given node.
Thisisthe main function to acuire metainformation for agiven
node. It returns key-value pairs with the information. Most values will
be of type string, but other object types are possible. Please see the list of
sorcer.silenus.core. Fil eStoreConstants.
Most notable attributes are:

189

» FileName: ATTR_NANME
» FileType: ATTR_TYPE
* List of children: ATTR_CHI LDREN

getProviderID()

Synopsi s: public ServicelD getProviderlD() throws
java.rm . Renot eExcepti on;

Parameters

return
the ID of this provider
Exceptions

Renot eExcepti on
If aremote 10 error occurs.
Standard method to receive the Servicel D of this provider.

getTimeVector()

Synopsi s: public Map get Ti mneVector () throws java.rm . RenoteException;

Parameters

return
the time vector.
Exceptions

Renot eExcept i on
If aremote 10 error occurs.
Asks a metadata store for its current time vector.
The time vector can be used to check if a metadata storeisin synch.

190

registerForEvents(RemoteEventListener, long)

Synopsi s: public Lease registerForEvents(net.jini.core.event.RenoteEventLis\
tener |istener,

| ong desiredLease)
throws net.jini.core.lease.LeaseDeni edExcepti on,
java.rm . Renot eExcepti on;

Parameters

|istener
the client listener.
desi redLease
length of the desired |ease.
return
a L ease object that can be used to renew the lease.
Exceptions

LeaseDeni edExcepti on
if the lease cannot be granted.
Renot eExcepti on
If aremote 10 error occurs.
See Also
sorcer.silenus. core. Fil eSt oreEvent
Registers a client to receive remote events from this metadatastore.
A listener registered with a metadatastore will receive messages of type
sorcer.silenus. core. Fil eSt oreEvent

retrieveChangel. ogSince(Map)

Synopsi s: public Metadat aSt ore. Met adat aSt or eChangelLog retri eveChangelLogSi nc\
e(java.util.Map tinmeVector)

191

throws java.rm . Renot eExcepti on;

Parameters

ti meVect or
the time vector of the caller.
return
asorcer.sil enus. core. Met adat aSt or e. Met adat aSt or eChangelLog
object with the information.
Exceptions

Renot eExcept i on
If aremote 10 error occurs.
Retrieves all the changes that have happend since the given time vector.

retrieveListOfAllActiveNodes()

Synopsi s: public Collection retrieveListOf All ActiveNodes() throws
java.rm . Renot eExcepti on;

Parameters

return
alist of Msuid
Exceptions

Renot eExcept i on
If aremote 10 error occurs.
Retrieves alist of all items stored in this metadata store that are till active.
An active item is an item that has a parent (is not deleted).

updateNode(Msuid, Map, Map, ServerTransaction)

Synopsi s: public Map updat eNode(sorcer. sil enus. core. Msui d node,

192

java.util.Map newAttri butes,
java.util.Map ol dAttri butes,
net.jini.core.transaction.server. Server Tran\
saction transaction)
throws java.rm . Renot eExcepti on;

Parameters

newAt tri but es

the new attributes to set.
node

the node to update.
ol dAttri butes

old attributes that must be still be set for the command to execute or null.
transacti on

a ServerTransaction if needed or null if not.
return

the current attributes of the node given.

Exceptions

Renot eExcepti on
If aremote 10 error occurs.
Updates a node with the given attributes.
This only updates the values given. Y ou must set a value explicitly to null to
deleteit.

Class M etadataStore.M etadataStoreChangel og

A class representing a metadata store change log.
It contains alist of changed items and their changes. It also contains the current
time vector.

Synopsis

package sorcer. sil enus. core. Met adat aSt or e;

193

public static class MtadataStore. Met adat aSt or eChangelLog i npl ements Seriali\
zabl e {

/1 Public Constructors
publ i c Met adat aSt or e. Met adat aSt or eChangelLog(j ava. util.Map theTi neVect or,
java.util.Map theChangedAttr s\

/1 Public Methods
public Map get ChangedAttrs();
public Map get Ti meVector();

}

Methodsinherited from java.lang.Object: cl one, equal s,fi nal i ze,
get O ass, hashCode, notify,notifyA | ,toString,wait

Inheritance Path. java.lang.Object->
sorcer.silenus.core.M etadataStore.M etadataStoreChangel og

M etadataStore.M etadataStoreChangel og(Map, Map)

Synopsi s: public Metadat aSt ore. Met adat aSt or eChangelLog(j ava. util.Map theTi me\
Vect or,

java.util.Map theChan\
gedAttrs);

Parameters

t heTi meVect or
the time vector;
t heChangedAttrs
the changed attributes.
Creates a new changelog with the new time vector (the later time) and the given
changes.

getChangedAttrs()

194

Synopsi s: public Map get ChangedAttrs();

Parameters

return
the list of changed items.
Contains alist of changed items and the attributes that have changed.

getTimeV ector()

Synopsi s: public Map get Ti neVector ();

Parameters

return
the current time vector.
Contains the current time vector.

Class M etadataStore.NodeCreated

Data class for created mds objects.
Synopsis
package sorcer.sil enus. core. Met adat aSt ore
public static class MetadataStore. NodeCreated inplenents Serializable {
/1 Public Constructors
publ i c Metadat aSt or e. NodeCr eat ed(sorcer. sil enus. core. Msuid uid,
java.util.Map attrs);
/1l Public Methods

public Map getAttributes();
public Msuid getMuid();

195

Methodsinherited from java.lang.Object: cl one, equal s,fi nal i ze,
get Cl ass, hashCode,notify,noti fyAl |l ,toString,wait

Inheritance Path. java.lang.Object->
sorcer.silenus.core.M etadataStore.NodeCreated

M etadataStore.NodeCreated(Msuid, Map)

Synopsi s: public Metadat aSt ore. NodeCr eat ed(sorcer. sil enus. core. Msui d uid,
java.util.Map attrs);

Parameters

attrs
Attributes of the new node.
uid
msuid of the new node.
Creates a new NodeCreated object.

getAttributes()

Synopsi s: public Map getAttributes();

Parameters

return
Returns the attributes.
Getter method for property attributes.

getMsuid()

Synopsi s: public Msuid getMsuid();

196

Parameters

return
Returns the msuid.
Getter method for property msuid.

Class Msuid

Class to represent objects store in the metadata store.
This class provides UIDs that can be extended by adding ServicelDs. Thisis
necessary for synchronization.

Synopsis

package sorcer. sil enus. core;
public class Msuid inplements Serializable {

/] Public Static Fields
public final static Msuid ROOTID;

/1 Public Static Methods
public static Msuid fronString(java.lang. String nane);
public static Msuid randomvsui d();

/1 Public Methods

publi c bool ean equal s(j ava. | ang. Cbj ect obj);

public int hashCode();

public String toString();

public Msuid withOriginatorlD(net.jini.core.lookup. ServicelD servicelD);

Methodsinherited from java.lang.Object: cl one, equal s,final i ze,
get d ass, hashCode, notify,notifyA | ,toString,wait
Version
$Revision: 1.1 $ $Date: 2006/09/02 19:26:36 $
Inheritance Path. javalang.Object-> sorcer.silenus.core.Msuid

197

ROQOTID

Synopsi s: public final static sorcer.silenus.core.Muid ROOTI D

Id for the object at the root node.

equals(Object)

Synopsi s: public bool ean equal s(j ava. | ang. Obj ect obj);

fromString(String)

Synopsi s: public static Msuid fronString(java.lang. String nane);

Parameters

nanme
the string to parse.
return
aMsuid object, if possible, or null if not.
Triesto create aMsuid from a given String.

hashCode()

Synopsi s: public int hashCode();

randomMsuid()

Synopsi s: public static Msuid randoniVsui d();

198

Parameters

return
avalid Msuid.
Creates arandom Msuid.

toString()

Synopsi s: public String toString();

Parameters

return
a String representation
Creates a String representation for this Msuid.
This representation can be parsed withf ronSt ri ng(j ava. | ang. Stri ng)

withOriginatorl D(Servicel D)

Synopsi s: public Msuid withOriginatorlD(net.jini.core.lookup. ServicelD serv\
icelD);

Parameters

servicel D
the new originator|D
return
the new Msuid
returns a new instance representing a UUID with the sameitemID but with a
different originatorID.

| nterface OutputFileChannel A ccessor

199

A writable byte sequence accessor. This classis serializable. It contains all
information necesary to open awritable byte channel.

Synopsis

package sorcer.silenus.core
public interface QutputFil eChannel Accessor inplenents Serializable {

/1l Public Methods
public Fil eChannel openQutputFil eChannel () throws java.io.| OException
}

Version
$Revision: 1.1 $ $Date: 2006/09/02 19:26:36 $
Snce
Nov 15, 2005
Inheritance Path. sorcer.silenus.core.OutputFileChannel Accessor

openOutputFileChannel ()

Synopsi s: public FileChannel openQutputFil eChannel () throws
java.io. | OException

Parameters

return
an open, writeable byte channel that can be used to write data.
Exceptions

| OException
if anio error occurs
opens up a WriteableByteChannel that can be used to write data.

| nterface RemoteSilenusA ccessor

200

Interface to a service providing access to other SILENUS services.

Synopsis

package sorcer. sil enus. core;
public interface RenoteSilenusAccessor inplenents Renote {

/1 Public Methods
public MetadataStore getMetadataStore(net.jini.core.|ookup. ServicelD ol dl\
D)

throws Servi ceUnavai |l abl eExcepti on,
java. rm . Renot eExcepti on;

Inheritance Path. sorcer.silenus.core.RemoteSilenusA ccessor

getM etadataStore(Servicel D)

Synopsi s: public MetadataStore get MetadataStore(net.jini.core.|ookup. Servic\
el D ol dI D

throws Servi ceUnavail abl eExcepti on,
java. rm . Renot eExcepti on;

Parameters

ol dI D
invalidate this metadatastore if given. May be null.
return
A proxy to a metadatastore.
Exceptions

Servi ceUnavai | abl eExcepti on
if no metadata store could be found
Renot eExcepti on
if aremoteio error occurs.

201

Retrieves a proxy to a running metadatastore.

Exception ServiceUnavail ableException

Exception class that states that a needed serviceis currently unavailable.

Synopsis

package sorcer.silenus.core
public class ServiceUnavail abl eExcepti on extends Exception ({

/1 Public Constructors
publ i c Servi ceUnavail abl eExcepti on(java.l ang. String whi chServi ce);

}

Methodsinherited from java.lang.Throwable: fi | | | nSt ackTr ace,
get Cause, get Local i zedMessage, get Message, get St ackTr ace,
i nit Cause, printStackTrace,set StackTrace,toString
Methodsinherited from java.lang.Object: cl one, equal s,fi nal i ze,
get Cl ass, hashCode, noti fy,notifyAll,wait
Version
$Revision: 1.2 $ $Date: 2006/09/02 19:26:36 $
Inheritance Path. javalang.Object-> java.lang.Throwable->
java.lang.Exception-> sorcer.silenus.core.ServiceUnavail ableException

ServiceUnavailableException(String)

Synopsi s: public Servi ceUnavai |l abl eException(java.lang. String whi chService)\

Parameters

whi chServi ce
the name of the service that is unavailable.
Creates anew ServiceUnavailableException.

202

| nterface SorcerByteStore

SORCER interface to a ByteStore.

Synopsis

package sorcer. sil enus. core;
public interface SorcerByteStore inplenments Renote {

/1 Public Methods
public ServiceContext createByteSequence(sorcer.base. Servi ceCont ext param

throws java.rm . Renot eExcepti on;

public Servi ceCont ext getByteSequence(sorcer.base. Servi ceCont ext param
throws java.io.| CException;

public ServiceContext getFileAttribute(sorcer.base. Servi ceContext paran
throws java.io.| OException;

public Servicel D getProviderlD() throws java.rm .RenoteException;

public ServiceContext getSupportedAttributes(sorcer. base. Servi ceContext p\

ar am

throws java.rn . Renot eExcepti on;

}
Version

$Revision: 1.2 $ $Date: 2006/09/02 19:26:36 $
Snce

Nov 15, 2005
See Also

sorcer.silenus.core.ByteStore

Inheritance Path. sorcer.silenus.core.SorcerByteStore

createByteSequence(ServiceContext)

Synopsi s: public ServiceContext createByteSequence(sorcer. base. Servi ceCont e\
xt param

203

throws java.rm . Renot eExcepti on;

Parameters

par am
the parameters as a ServiceContext
return
the result as a ServiceContext
Exceptions

Renot eExcepti on
if aremoteio error occurs.

See Also
cr eat eByt eSequence(sorcer. sil enus. core. Bsui d,
net.jini.core.transaction.server. Server Transacti on,
java.util . Mp),
cr eat eByt eSequence(sorcer. sil enus. core. Bsui d,
net.jini.core.transaction.server. Server Transacti on,
java.util . Mp,
sorcer.silenus. core. | nput Fi | eChannel Accessor)

create a new byte sequence on this store.

getByteSequence(ServiceContext)

Synopsi s: public ServiceContext getByteSequence(sorcer. base. Servi ceCont ext \
par am

throws java.io.| OException;

Parameters

par am
the parameters as a ServiceContext

204

return
the result as a ServiceContext
Exceptions

| CExcepti on
if aio error occurs.
See Also
get Byt eSequence(sorcer. sil enus. core. Bsui d)
retrieve an accessor to a stored byte sequence.

getFileAttribute(ServiceContext)

Synopsi s: public ServiceContext getFileAttribute(sorcer.base. Servi ceCont ext\
par am

throws java.io.| CException;

Parameters

par am
the parameters as a ServiceContext
return
the result as a ServiceContext
Exceptions

| OException
if aio error occurs.
See Also
getFileAttribute(sorcer.silenus.core. Bsuid,
java.l ang. String)
Retrieves an intrisic attribute for a stored byte sequence.

getProviderID()

205

Synopsi s: public Servicel D getProviderlD() throws
java.rm . Renot eExcepti on;

Parameters

return
the providersID.
Exceptions

Renot eExcepti on
if aremoteio error occurs.
See Also
get Provi der 1 ()
get the ID of this provider.

getSupportedAttributes(ServiceContext)

Synopsi s: public ServiceContext getSupportedAttributes(sorcer.base. ServiceC
ont ext param

throws java.rm . Renot eExcepti on;

Parameters

par am
the parameters as a ServiceContext
return
the result as a ServiceContext
Exceptions

Renot eExcepti on
if aremoteio error occurs.
See Also
get SupportedAttri butes()
Retrieves alist of intrinsic attributes suported on this byte store.

206

I nterface SorcerFileStore

SORCER interface to aFileStore.

Synopsis

package sorcer. sil enus. core;
public interface SorcerFileStore inplenments Renote, Coordi nator {

/1 Public Methods
public Servi ceContext createNode(sorcer.base. Servi ceContext pc)
throws java.rm . Renot eExcepti on,
Servi ceUnavai | abl eExcepti on;
public Servi ceContext del et eNode(sorcer. base. Servi ceCont ext pc)
throws Servi ceUnavai |l abl eExcepti on,
java.io. | OException;
public Servi ceContext expandNode(sorcer.base. Servi ceCont ext context)
throws java.rm . Renot eExcepti on,
Servi ceUnavai | abl eExcepti on;
public ServiceContext setAttributes(sorcer.base. Servi ceContext pc)
throws java.rm . Renot eExcepti on,
Ser vi ceUnavai | abl eExcepti on;

}
Version

$Revision: 1.3 $ $Date; 2006/10/02 05:44:31 $
See Also

sorcer.silenus.core.FileStore
Snce

Nov 15, 2005

Inheritance Path. sorcer.silenus.core.SorcerFileStore

createNode(ServiceContext)

Synopsi s: public ServiceContext createNode(sorcer. base. Servi ceContext pc)
throws java.rm . Renot eExcepti on,
Servi ceUnavai | abl eExcepti on;

207

Parameters

pc
the parameters as a ServiceContext
return
the result as a ServiceContext
Exceptions

Renot eExcept i on
if aremoteio error occurs.
Servi ceUnavai | abl eExcepti on
if not all required services are available.
See Also
creat eNode(j ava. util . Map)
create a new node.

del eteNode(ServiceContext)

Synopsi s: public ServiceContext del et eNode(sorcer. base. Servi ceContext pc)
t hrows Servi ceUnavail abl eExcepti on,
java.io.| OException;

Parameters

pc
the parameters as a ServiceContext
return
the result as a ServiceContext
Exceptions

Servi ceUnavai | abl eExcepti on

if not all required services are available.
| OException

if aio error occurs.

208

See Also
del et eNode(sorcer. sil enus. core. Msui d, bool ean)
delete anode.

expandNode(ServiceContext)

Synopsi s: public ServiceContext expandNode(sorcer. base. Servi ceContext conte\
xt)

throws java.rm . Renot eExcepti on,
Servi ceUnavai | abl eExcepti on;

Parameters

cont ext
the parameters as a ServiceContext
return
the result as a ServiceContext
Exceptions

Renot eExcepti on
if aremoteio error occurs.
Servi ceUnavai | abl eExcepti on
if not all required services are available.
See Also
expandNode(sorcer. sil enus. core. Msui d)
expand a node.

setAttributes(ServiceContext)

Synopsi s: public ServiceContext setAttributes(sorcer.base. ServiceContext pc\

)

throws java. rm . Renot eExcepti on,
Servi ceUnavai | abl eExcepti on;

209

Parameters

pc
the parameters as a ServiceContext
return
the result as a ServiceContext
Exceptions

Renot eExcepti on
if aremoteio error occurs.
Servi ceUnavai | abl eExcepti on
if not all required services are available.
See Also
setAttributes(sorcer.silenus.core.Muid, java.util.Map)
Set attributes for a node.

| nterface SorcerM etadataStore

SORCER interface to a M etadataStore.

Synopsis

package sorcer.silenus.core
public interface SorcerMetadataStore inplenents Renote {

/1 Public Methods

public Servi ceContext createNode(sorcer.base. Servi ceContext context)
throws java.rm . Renot eException

public ServiceContext del et eNode(sorcer.base. Servi ceCont ext pc)
throws java.io.| OException

public Servi ceCont ext expandNode(sorcer. base. Servi ceCont ext context)
throws java.rm . Renot eException

public ServiceContext getTi neVector (sorcer.base. Servi ceCont ext pc)
throws java.rm . Renot eException

public Servi ceContext registerForEvents(sorcer. base. Servi ceContext pc)

210

throws java.rm . Renot eExcepti on,
net.jini.core.l ease. LeaseDeni edExcepti on;
public ServiceContext retrieveChangeLogSi nce(sorcer. base. Servi ceContext p\

c)

throws java.rm . Renot eExcepti on;
public ServiceContext retrieveListOf Al ActiveNodes(sorcer. base. Servi ceCon\
text pc)

throws java.rm . Renot eExcepti on;
public ServiceContext updateNode(sorcer. base. Servi ceContext context)
throws java.rn . Renot eExcepti on;

}

Version
$Revision: 1.3 $ $Date: 2006/10/12 01:29:51 $
Snce
Nov 15, 2005
Inheritance Path. sorcer.silenus.core.SorcerMetadataStore

createNode(ServiceContext)

Synopsi s: public ServiceContext createNode(sorcer. base. Servi ceContext conte\
xt)

throws java.rm . Renot eExcepti on;

Parameters

cont ext
the parameters as a ServiceContext
return
the result as a ServiceContext
Exceptions

Renot eExcepti on
if aremoteio error occurs.

211

See Also
creat eNode(j ava. util . Map,
net.jini.core.transaction.server. Server Transacti on)
create a node.

deleteNode(ServiceContext)

Synopsi s: public ServiceContext del et eNode(sorcer. base. Servi ceContext pc)
throws java.io.| OException;

Parameters
pc
the parameters as a ServiceContext
return
the result as a ServiceContext
Exceptions

| CExcepti on
if aio error occurs.
See Also
del et eNode(sorcer. sil enus. core. Msui d, bool ean)
delete a node.

expandNode(ServiceContext)

Synopsi s: public ServiceContext expandNode(sorcer. base. Servi ceCont ext conte\
xt)

throws java.rm . Renot eExcepti on;

Parameters

cont ext
the parameters as a ServiceContext

212

return
the result as a ServiceContext
Exceptions

Renot eExcepti on
if aremoteio error occurs.
See Also
expandNode(sorcer. sil enus. core. Msui d)
expand a node.

getTimeV ector(ServiceContext)

Synopsi s: public ServiceContext getTi meVector (sorcer. base. Servi ceCont ext pc\

)

throws java.rm . Renot eExcepti on;

Parameters

pc
the parameters as a ServiceContext
return
the result as a ServiceContext
Exceptions

Renot eExcept i on
if aremoteio error occurs.
See Also
get Ti meVect or ()
retrieve the current time vector.

registerForEvents(ServiceContext)

Synopsi s: public ServiceContext registerForEvents(sorcer. base. Servi ceCont ex\

213

t pc)

throws java.rm . Renot eExcepti on,
net.jini.core.lease. LeaseDeni edExcepti on;

Parameters

pc
the parameters as a ServiceContext
return
the result as a ServiceContext
Exceptions

Renot eExcept i on
if aremoteio error occurs.
LeaseDeni edExcepti on
if the Lease requested cannot be granted.
register for MDS events.

retrieveChangel. ogSince(ServiceContext)

Synopsi s: public ServiceContext retrieveChangeLogSi nce(sorcer. base. Servi ceC
ontext pc)

throws java.rm . Renot eExcepti on;

Parameters

pc
the parameters as a ServiceContext
return
the result as a ServiceContext
Exceptions

Renot eExcepti on
if aremoteio error occurs.

214

See Also
retri eveChangelLogSi nce(j ava. util . Map)
retrieve a change log.

retrieveListOfAll ActiveNodes(ServiceContext)

Synopsi s: public ServiceContext retrieveLi stOfAll Acti veNodes(sorcer. base. Se\
rvi ceCont ext pc)

throws java.rm . Renot eExcepti on;

Parameters

pc
the incoming context. Not used.
return
acollection of Msuids
Exceptions

Renot eExcepti on
If aremote 10 error occurs. *
See Also
retrieveLi st Of All Acti veNodes()
Retrieves alist of all items stored in this metadata store that are still active.
An active item is an item that has a parent (is not deleted).

updateNode(ServiceContext)

Synopsi s: public Servi ceContext updat eNode(sorcer. base. Servi ceContext conte\
xt)

throws java.rm . Renot eExcepti on;

215

Parameters

cont ext
the parameters as a ServiceContext
return
the result as a ServiceContext
Exceptions

Renot eExcepti on
if aremoteio error occurs.
See Also
updat eNode(sor cer. si |l enus. core. Msui d,
java.util.Mp, java.util.Mp,
net.jini.core.transaction.server. Server Transacti on)
modify anode.

Class Time

Describes asingle logical time element consisting of local and global time.

Synopsis

package sorcer. sil enus. core;
public class Time inplenents Serializable {

/1 Public Constructors
public Time();
public Tine(long |ocal Time, |ong gl obal Tine);

/1 Public Methods

public | ong getd obal ();

public | ong getlLocal ();

public void incrementd obal ();

public void increnentLocal Andd obal ();
public void setd obal (| ong newd obal) ;

216

public void setlLocal (I ong newLocal);
public String toString();

}

Methodsinherited from java.lang.Object: cl one, equal s,fi nal i ze,
get Cl ass, hashCode,notify,noti fyAll,toString,wait
Version
$Revision: 1.2 $ $Date: 2006/09/02 19:26:36 $
Inheritance Path. javalang.Object-> sorcer.silenus.core. Time

Time()

Synopsi s: public Tinme();

Creates anew logical time with local and global values of 0.

Time(long, long)

Synopsi s: public Tinme(long |ocal Time, |ong gl obal Tine);

Parameters

| ocal Ti ne
local time.
gl obal Ti ne
global time.
Creates anew logical time with the given local and global values.

getGlobal ()

Synopsi s: public long getd obal ();

217

Parameters

return
the global time component.
Returns the global time component.

getLocal()

Synopsi s: public |ong getlLocal ();

Parameters

return
the local time component.
Returns the local time component.

incrementGlobal ()

Synopsi s: public void increnmentd obal ();

Increments just the global time component.

incrementLocal AndGlobal ()

Synopsi s: public void increnmentlLocal Andd obal ();

Increments both the local and global time component.

setGlobal (long)

Synopsi s: public void setd obal (| ong newd obal) ;

218

Parameters

newd obal
The global time component to set.
Sets the global time component.

setlocal (long)

Synopsi s: public void setlLocal (I ong newLocal);

Parameters

newlLocal
The local time component to set.
setsthe local time component.

toString()

Synopsi s: public String toString();

Constant field values

Package sorcer.silenus.core.*

ALIVE EVENT 0
ATTR_CHILDREN children
ATTR_CONTENTLASTMODIFIED getlastmodified
ATTR_CREATIONDATE creationdate
ATTR_FILEVERSION fileversion
ATTR_LOCATION location
ATTR_MAX_COPIES maxcopies

219

ATTR_MD5

md5

ATTR_METADATALASTMODIFIED

getmetalastmodified

ATTR_MIN_COPIES mincopies
ATTR_NAME displayname
ATTR_OPT_COPIES optcopies
ATTR_ORIGNIATOR originator
ATTR_PARENT parent
ATTR_SHA sha
ATTR_SIZE getcontentlength
ATTR_TARGET target
ATTR_TYPE getcontenttype
ATTR _TYPE WAS SET BY typewassetby
CREATION_FILEDATA_EVENT 101
CREATION_METADATA_EVENT 100

EV_CONTEXT_DURATION

Event/Duration

EV_CONTEXT_LEASE

Event/Lease

EV_CONTEXT_LISTENER

Event/Listener

FS CONTEXT_ATTRIBUTELIST

ByteStore/AttributeList

FS_CONTEXT_ATTRIBUTENAME

File/AttributeName

FS_CONTEXT_ATTRIBUTES

File/Attributes

FS_CONTEXT_ATTRIBUTEVALUE

File/AttributeVaue

FS_CONTEXT_CONTENT

File/Content

FS CONTEXT_OLD_ATTRIBUTES

File/OldAttributes

FS_CONTEXT_RECURSIVE

File/Recursive

FS_CONTEXT_SERVICEID

File/ServicelD

220

FS_CONTEXT_SUCCESS

File/Success

FS CONTEXT TRANSACTION

File/Transaction

FS CONTEXT_UUID File/'UUID
HAS_SYNCHED_EVENT 1

MDS CONTEXT_CHANGELOG M etadata/Changel og
MDS_CONTEXT_MSUIDS Metadata/M stids

MDS CONTEXT_TIMEVECTOR

M etadata/ TimeV ector

MIMETY PE_DIRECTORY silenug/dir
MIMETYPE_LINK silenus/link
TYPE_SET_CONTENT content
TYPE_SET_EXT extension
TYPE_SET_OLDCONTENT ol dcontent
TYPE_SET_USER user
UPDATE _FILEDATA_EVENT 201
UPDATE METADATA_EVENT 200

221

COLOPHON

Thisthesis was edited using XMLmind XML Editor Standard Edition 3.4.0, Vi
IMproved 6.2, and Aquamacs Emacs 0.9.9d. It was written using DocBook XML 4.4.
It was trandlated to xsl-fo using a customized version of the docbook-xd stylesheets,
snapshot from 10/8/06. The trand ation was done using the xsltproc from libxml. The
typesetting was done using fop, snapshot from Oct 06. Automation was provided by ant
1.6.5. Formulas where edited with NeoOffice 2.0 Aqua Beta 3. They where converted to
SV G using JEuclid, snapshot from Oct 06. UML diagrams where created using Poseidon
For UML CE 4.2.1. Additional graphics where created using Adobe Illustrator CS2 and
NeoOffice Draw.

222

	Silenus - A Federated Service-Oriented Approach to Distributed File Systems
	Table of Contents
	Abstract
	Chapter 1. Introduction
	Problem Statement
	Dissertation Outline

	Chapter 2. Background and Literature Review
	Existing model for remote file storage
	Model functionality
	Additional terms
	Shortcomings of the traditional model

	Existing network file storage solutions
	Non-replicated remote file systems
	Network File System (NFS)
	Common Internet File System (CIFS)

	Replicated file systems
	Andrew File System (AFS)
	Coda

	Data grid solutions
	Globus file store
	Avaki

	Other existing file storage solutions
	File system core features

	Architectural qualities for distributed systems
	Transparencies
	Confidentiality
	Symmetric encryption
	Asymmetric encryption
	Encrypting decryption keys
	Existing cryptographic libraries

	Global availability
	WebDAV
	Web-based access to file storage

	Disconnected Operation
	Manageability
	Scalability
	Reliability
	Modifiability
	Platform independence

	Service Orientation
	Eight fallacies of distributed computing
	Generations of Remote Procedure Calls
	Service Oriented Architecture
	Jini Network Technology
	Peer-to-peer networking
	SORCER
	Eight truth of networked computing

	Security in existing file storage solutions
	Privileges
	UNIX (NFS, GlobusFTP)
	Windows (CIFS)
	AFS and Coda
	WebDAV with AC extensions
	Security Table

	Authentication mechanisms
	Client side authentication
	Server side authentication
	Third party authentication

	Privacy mechanisms

	Chapter 3. Requirement Analysis
	File Storage Scenarios
	Small work group
	High-Performance Computing Lab
	Large network
	Home user
	Concurrent Engineers
	Student Computer Lab
	Astronomy
	High-energy physics

	Host types on the network
	Server
	Always up client
	Work time up client
	Laptop
	Mobile client

	Use Case Roles
	File system users
	Administrators
	Optimizer services
	Service provisioners
	Intergrid service providers

	Use Case Design

	Chapter 4. Architecture and Design
	A model for a grid based environment
	SILENUS architectural model
	Components
	Service user interface
	WebDAV adapter
	NFS adapter
	File store
	Metadata store
	Byte store
	Optimizer

	Component Use Cases
	Browse files use case
	Push upload file use case
	Pull upload file use case
	Non-caching download file use case
	Caching download file use case
	Use cases for Service-oriented programs

	File system attributes
	Transparency
	Concurrent File Updates
	File Replication
	Operating system heterogeneity
	Fault tolerance
	Consistency
	Efficiency
	Idempotency
	Security, Access Control, Authentication

	Managing change
	Change in file metadata
	Change in file content

	Metadata store synchronization
	Consistency
	Consistency requirements
	Measure of consistency
	Order of events
	Dual-Clock Time Vectors
	Properties of Dual-Clock Time Vectors
	Performance of Dual-Clock Time Vectors
	Conflict avoidance
	Conflict resolution through virtual duplication
	The switchback problem

	Security
	Proposition
	Trusted third party model
	Decoupling the authentication service
	Privacy
	Roles
	Role Manager Service
	Nomadic RMS

	Model Performance Analysis
	Browse files
	Upload files
	Download files

	Chapter 5. Validation
	Conceptual SILENUS Validation
	Class-level Design
	Package Diagram
	Class Diagrams

	Technical Architecture

	Operational SILENUS Validation
	Deployment Diagram
	Validation in a Connected System
	Validation for the Metacomputer Role
	Validation for a Disconnected System
	Data Integrity
	Validation of Architectural Qualities
	Actual Performance

	Chapter 6. Conclusion
	Bibliography
	Appendix A. Reference
	Package sorcer.silenus.core
	Class Bsuid
	Synopsis
	equals(Object)
	fromString(String)
	hashCode()
	nullBsuid()
	randomBsuid()
	toString()

	Interface ByteStore
	Synopsis
	createByteSequence(Bsuid, ServerTransaction, Map)
	createByteSequence(Bsuid, ServerTransaction, Map, InputFileChannelAccessor)
	getByteSequence(Bsuid)
	getFileAttribute(Bsuid, String)
	getProviderID()
	getSupportedAttributes()

	Class ByteStore.ByteSequenceCreated
	Synopsis
	ByteStore.ByteSequenceCreated(OutputFileChannelAccessor, Bsuid)
	getBsuid()
	getWriteableByteSequence()

	Interface Coordinator
	Synopsis
	downloadFile(ServiceContext)
	registerForEvents(ServiceContext)
	replicateFile(ServiceContext)
	uploadFile(ServiceContext)

	Interface FileStore
	Synopsis
	createNode(Map)
	deleteNode(Msuid, boolean)
	downloadFile(Msuid)
	expandNode(Msuid)
	registerForEvents(RemoteEventListener, long)
	replicateFile(Msuid, ServiceID)
	setAttributes(Msuid, Map)
	uploadFile(Msuid, Map)
	uploadFile(Msuid, Map, InputFileChannelAccessor)

	Interface FileStoreConstants
	Synopsis
	ATTR_CHILDREN
	ATTR_CONTENTLASTMODIFIED
	ATTR_CREATIONDATE
	ATTR_FILEVERSION
	ATTR_LOCATION
	ATTR_MAX_COPIES
	ATTR_MD5
	ATTR_METADATALASTMODIFIED
	ATTR_MIN_COPIES
	ATTR_NAME
	ATTR_OPT_COPIES
	ATTR_ORIGNIATOR
	ATTR_PARENT
	ATTR_SHA
	ATTR_SIZE
	ATTR_TARGET
	ATTR_TYPE
	ATTR_TYPE_WAS_SET_BY
	EV_CONTEXT_DURATION
	EV_CONTEXT_LEASE
	EV_CONTEXT_LISTENER
	FS_CONTEXT_ATTRIBUTELIST
	FS_CONTEXT_ATTRIBUTENAME
	FS_CONTEXT_ATTRIBUTES
	FS_CONTEXT_ATTRIBUTEVALUE
	FS_CONTEXT_CONTENT
	FS_CONTEXT_OLD_ATTRIBUTES
	FS_CONTEXT_RECURSIVE
	FS_CONTEXT_SERVICEID
	FS_CONTEXT_SUCCESS
	FS_CONTEXT_TRANSACTION
	FS_CONTEXT_UUID
	MAP_ATTR_DIGEST
	MDS_CONTEXT_CHANGELOG
	MDS_CONTEXT_MSUIDS
	MDS_CONTEXT_TIMEVECTOR
	MIMETYPE_DIRECTORY
	MIMETYPE_LINK
	TYPE_SET_CONTENT
	TYPE_SET_EXT
	TYPE_SET_OLDCONTENT
	TYPE_SET_USER

	Class FileStoreEvent
	Synopsis
	FileStoreEvent(ServiceID, long, long, Set, Map, Map)
	FileStoreEvent(ServiceID, long, Map)
	ALIVE_EVENT
	CREATION_FILEDATA_EVENT
	CREATION_METADATA_EVENT
	HAS_SYNCHED_EVENT
	UPDATE_FILEDATA_EVENT
	UPDATE_METADATA_EVENT
	getChangedAttrs()
	getSourceItems()
	getTimeVector()

	Interface InputFileChannelAccessor
	Synopsis
	openInputFileChannel()

	Interface MetadataStore
	Synopsis
	createNode(Map, ServerTransaction)
	deleteNode(Msuid, boolean)
	expandNode(Msuid)
	getProviderID()
	getTimeVector()
	registerForEvents(RemoteEventListener, long)
	retrieveChangeLogSince(Map)
	retrieveListOfAllActiveNodes()
	updateNode(Msuid, Map, Map, ServerTransaction)

	Class MetadataStore.MetadataStoreChangeLog
	Synopsis
	MetadataStore.MetadataStoreChangeLog(Map, Map)
	getChangedAttrs()
	getTimeVector()

	Class MetadataStore.NodeCreated
	Synopsis
	MetadataStore.NodeCreated(Msuid, Map)
	getAttributes()
	getMsuid()

	Class Msuid
	Synopsis
	ROOTID
	equals(Object)
	fromString(String)
	hashCode()
	randomMsuid()
	toString()
	withOriginatorID(ServiceID)

	Interface OutputFileChannelAccessor
	Synopsis
	openOutputFileChannel()

	Interface RemoteSilenusAccessor
	Synopsis
	getMetadataStore(ServiceID)

	Exception ServiceUnavailableException
	Synopsis
	ServiceUnavailableException(String)

	Interface SorcerByteStore
	Synopsis
	createByteSequence(ServiceContext)
	getByteSequence(ServiceContext)
	getFileAttribute(ServiceContext)
	getProviderID()
	getSupportedAttributes(ServiceContext)

	Interface SorcerFileStore
	Synopsis
	createNode(ServiceContext)
	deleteNode(ServiceContext)
	expandNode(ServiceContext)
	setAttributes(ServiceContext)

	Interface SorcerMetadataStore
	Synopsis
	createNode(ServiceContext)
	deleteNode(ServiceContext)
	expandNode(ServiceContext)
	getTimeVector(ServiceContext)
	registerForEvents(ServiceContext)
	retrieveChangeLogSince(ServiceContext)
	retrieveListOfAllActiveNodes(ServiceContext)
	updateNode(ServiceContext)

	Class Time
	Synopsis
	Time()
	Time(long, long)
	getGlobal()
	getLocal()
	incrementGlobal()
	incrementLocalAndGlobal()
	setGlobal(long)
	setLocal(long)
	toString()

	Constant field values
	Package sorcer.silenus.core.*

