
SILENUS - A FEDERATED SERVICE-ORIENTED

APPROACH TO DISTRIBUTED FILE SYSTEMS

by

MAXIMILIAN BERGER, B.S.

A DISSERTATION

IN COMPUTER SCIENCE

Submitted to the Graduate Faculty

of Texas Tech University in

Partial Fulfillment of

the Requirements for

the Degree of

DOCTOR OF PHILOSOPHY

Approved

Michael Sobolweski
Chairperson of the Committee

Noe Lopez-Benitez

Michael Shin

Per Anderson

Accepted

John Borelli

Dean of the Graduate School

December, 2006

Copyright © 2006 Maximlilian Berger

i

ACKNOWLEDGEMENTS

I would like to thank my Advisor Dr. Michael Sobolweski. This thesis could not

have been done without his permanent effort to keep me on focused on the goal. I would

also like to thank Dr. Noe Lopez-Benitez, Dr. Michael Shin, and Dr. Per Anderson for

serving in my comittee. They could provide me with a different viewpoint.

A very special thanks goes to Barbara Hartmann for being the greatest person on

earth and for making our relationship work half way around the globe for three years.

I would also like to thank my best friend and roommate Nathan Larson. He was

always there to support, no matter how crazy the idea.

ii

TABLE OF CONTENTS

Abstract ... xi

1. Introduction .. 1

Problem Statement ... 3

Dissertation Outline ... 4

2. Background and Literature Review ... 5

Existing model for remote file storage .. 5

Model functionality .. 6

Additional terms ... 6

Shortcomings of the traditional model ... 7

Existing network file storage solutions .. 8

Non-replicated remote file systems .. 8

Replicated file systems .. 10

Data grid solutions ... 11

Other existing file storage solutions .. 12

File system core features ... 12

Architectural qualities for distributed systems ... 13

Transparencies .. 13

Confidentiality .. 14

Global availability .. 17

Disconnected Operation ... 20

Manageability ... 21

Scalability ... 22

Reliability ... 22

Modifiability ... 23

Platform independence ... 23

Service Orientation .. 24

Eight fallacies of distributed computing .. 24

Generations of Remote Procedure Calls .. 25

Service Oriented Architecture .. 26

Jini Network Technology ... 29

iii

Peer-to-peer networking ... 30

SORCER .. 31

Eight truth of networked computing .. 32

Security in existing file storage solutions .. 32

Privileges .. 33

Authentication mechanisms ... 44

Privacy mechanisms ... 45

3. Requirement Analysis .. 46

File Storage Scenarios ... 46

Small work group .. 46

High-Performance Computing Lab .. 47

Large network .. 47

Home user .. 48

Concurrent Engineers ... 48

Student Computer Lab ... 48

Astronomy .. 48

High-energy physics ... 49

Host types on the network ... 49

Server ... 49

Always up client .. 49

Work time up client ... 49

Laptop .. 50

Mobile client .. 50

Use Case Roles .. 50

File system users .. 51

Administrators .. 51

Optimizer services .. 52

Service provisioners ... 52

Intergrid service providers ... 53

Use Case Design .. 53

4. Architecture and Design .. 65

A model for a grid based environment .. 66

iv

SILENUS architectural model ... 67

Components .. 70

Service user interface ... 70

WebDAV adapter ... 71

NFS adapter ... 72

File store .. 73

Metadata store .. 76

Byte store ... 77

Optimizer .. 78

Component Use Cases ... 78

Browse files use case ... 80

Push upload file use case ... 80

Pull upload file use case .. 81

Non-caching download file use case .. 82

Caching download file use case ... 82

Use cases for Service-oriented programs ... 83

File system attributes ... 85

Transparency .. 85

Concurrent File Updates .. 87

File Replication .. 87

Operating system heterogeneity ... 88

Fault tolerance .. 88

Consistency .. 89

Efficiency ... 89

Idempotency ... 89

Security, Access Control, Authentication .. 90

Managing change ... 90

Change in file metadata ... 90

Change in file content .. 91

Metadata store synchronization .. 92

Consistency .. 92

Consistency requirements .. 93

v

Measure of consistency .. 94

Order of events .. 95

Dual-Clock Time Vectors .. 99

Properties of Dual-Clock Time Vectors ... 101

Performance of Dual-Clock Time Vectors ... 104

Conflict avoidance ... 105

Conflict resolution through virtual duplication .. 106

The switchback problem .. 107

Security .. 109

Proposition ... 110

Trusted third party model .. 110

Decoupling the authentication service ... 110

Privacy .. 113

Roles ... 113

Model Performance Analysis ... 115

Browse files ... 117

Upload files .. 118

Download files ... 120

5. Validation ... 123

Conceptual SILENUS Validation .. 123

Class-level Design .. 124

Technical Architecture ... 128

Operational SILENUS Validation .. 129

Deployment Diagram ... 129

Validation in a Connected System ... 130

Validation for the Metacomputer Role .. 134

Validation for a Disconnected System ... 135

Data Integrity ... 137

Validation of Architectural Qualities ... 138

Actual Performance .. 139

6. Conclusion ... 141

Bibliography ... 144

vi

A. Reference .. 149

Package sorcer.silenus.core .. 149

Class Bsuid .. 149

Interface ByteStore ... 151

Class ByteStore.ByteSequenceCreated .. 156

Interface Coordinator ... 158

Interface FileStore .. 162

Interface FileStoreConstants .. 171

Class FileStoreEvent .. 180

Interface InputFileChannelAccessor .. 185

Interface MetadataStore ... 186

Class MetadataStore.MetadataStoreChangeLog ... 193

Class MetadataStore.NodeCreated ... 195

Class Msuid .. 197

Interface OutputFileChannelAccessor .. 199

Interface RemoteSilenusAccessor .. 200

Exception ServiceUnavailableException .. 202

Interface SorcerByteStore .. 203

Interface SorcerFileStore .. 207

Interface SorcerMetadataStore ... 210

Class Time ... 216

Constant field values .. 219

Package sorcer.silenus.core.* ... 219

vii

LIST OF FIGURES

2.1. File service architecture according to Colouris .. 6

2.2. Discovery in Service-Oriented Architecture ... 27

2.3. Execution in Service-Oriented Architecture ... 27

2.4. Service oriented Tasks and Jobs ... 28

3.1. Small work group ... 47

3.2. Typical user cases for a file storage system ... 51

3.3. Administrator use cases for a replicated file system ... 51

3.4. Optimizer use cases for a replicated file system ... 52

3.5. Provisioner user cases for a replicated file system ... 52

3.6. Use cases for the intergrid meta computer ... 53

4.1. Class Model vs. Architecture and Design ... 65

4.2. Silenus components communicating over the SORCER network 66

4.3. Grid model for data storage .. 67

4.4. The SILENUS Components .. 68

4.5. Component diagram for the user interface ... 70

4.6. Component diagram for the WebDAV adapter .. 71

4.7. The WebDAV adapter .. 71

4.8. Component diagram for the SILENUS facade ... 73

4.9. File upload transactional semantics .. 75

4.10. Component diagram for the metadata store .. 76

4.11. Component diagram for the byte store ... 77

4.12. Component diagram for the optimizer .. 78

4.13. SILENUS architectural model overview .. 79

4.14. Direct connection with a passive client .. 79

4.15. Direct connection with an active client .. 80

4.16. Browse Files ... 80

4.17. File upload with push ... 81

4.18. File upload with pull .. 81

4.19. Downloading a file ... 82

4.20. Downloading a file with caching .. 82

viii

4.21. Use case for SO Task using file store .. 83

4.22. Worker service download case ... 83

4.23. Worker service file upload case ... 84

4.24. Use case for several tasks using SO file store .. 84

4.25. A metadata change ... 91

4.26. Change of file content .. 91

4.27. An event diagram using logical clocks ... 96

4.28. An equivalent event diagram .. 96

4.29. Global vector time .. 97

4.30. Vector time propagation ... 98

4.31. Vector clock problem ... 99

4.32. Dual-clock time vectors with local and global counter 101

4.33. Virtual duplication example .. 107

4.34. The switchback problem ... 108

4.35. A solution for the switchback problem ... 108

4.36. Basic trusted third party model ... 110

4.37. Authentication with public-key cryptography and trust-store 111

4.38. Authentication with public-key cryptography and trust-store 112

4.39. Authentication via role manager service ... 114

4.40. Browse files use case .. 117

4.41. Push file upload use case .. 118

4.42. Pull file upload use case ... 119

4.43. Download without caching use case ... 120

4.44. Download with caching use case .. 120

5.1. Sargent Circle ... 123

5.2. Package overview for the SILENUS system .. 124

5.3. SORCER interfaces in core package .. 125

5.4. Object-oriented interface to metadata store .. 126

5.5. Object-oriented interface to byte store .. 127

5.6. Object-oriented interface to SILENUS facade .. 127

5.7. SILENUS Technical Architecture ... 128

5.8. Deployment Diagram .. 130

ix

5.9. Using the ServiceUI to browse files ... 131

5.10. Standard UNIX ls application used for browsing ... 133

5.11. Standard UNIX cat application used for download .. 133

5.12. Mobile client used for browsing and displaying files from the file store 134

x

LIST OF TABLES

2.1. File system core features on remote file storage solutions 13

2.2. NTFS basic file permissions ... 36

2.3. NTFS basic folder permissions ... 37

2.4. NFS special access permissions .. 38

2.5. NFS special access permissions (cont.) .. 39

2.6. File privileges in different file systems .. 42

2.7. Directory privileges in different file systems .. 43

3.1. Browse Files Use Case ... 54

3.2. Find Files Use Case .. 55

3.3. Upload Files Use Case ... 56

3.4. Download Files Use Case ... 57

3.5. Modify File Metadata ... 58

3.6. Replicate Files Use Case .. 59

3.7. Delete File Replica Use Case ... 60

3.8. Erase File Permanently Use Case ... 61

3.9. Get Service State Use Case .. 62

3.10. Provision Service Use Case .. 63

3.11. Stop Service Use Case .. 64

4.1. Examples of network types in use today .. 117

4.2. Estimated upload times for pull file upload .. 120

4.3. Estimated download times without caching .. 121

5.1. SILENUS performance over the NFS adapter .. 140

xi

ABSTRACT

File storage in computer systems has to be reliable, fast, and available over the

network. There are several approaches to distributed file systems, which suffer from

common problems: They are either very difficult to set up and maintain (such as AFS) or

have a single-point-of-failure (such as SMB, NFS).

The Federated Service Oriented Computing Environment (SORCER) provides

a framework for dynamic network services. It promises support for providing reliable,

autonomically deployed services.

Thus questions to be answered are:

• Can a dynamic distributed system such as SORCER provide the stability and reliability

that is needed to provide a file system for metacomputing applications?

• Would the additional overhead lead to a severe impact in performance?

• Could users without computer science knowledge use such a system?

1

CHAPTER 1. INTRODUCTION

Storage of data has always been an issue in computer science. Saving your data

to a hard drive is easy and convenient. Unfortunately, data saved to your hard drive is not

safe. There are several potential problems:

A primary problem of data storage is data theft. Nowadays this has become one

of the most important issues, but unfortunately, it is still overlooked by many developers.

On most PCs, a person sitting directly at the computer can access any data. For this

situation it is very unlikely that one or your competitors would walk into your office and

turn on your computer. Nevertheless, think about how many people actually have keys to

your office: your co-worker who may not like you, a housekeeper who is underpaid, and

so on. Even if your data is stored on a server, any system administrator can usually access

any stored data.

The second and most noticeable problem is that of computer failure. Computers

are not, and will never be infallible. In fact, at any given time only 80% of all hosts on

the network are working. Imagine having an important report on the server and not being

able to work on it, because it is down. There are different possibilities for failure: planned

maintenance, unplanned outages, network failure or server failure. Most of the times

these failures are temporary, in which case they are just annoying, but sometimes these

failures are permanent. In this case, one can only hope that you have a recent backup.

These are just two examples of the problems with today's file storage systems.

Both of which can be solved using much energy and thought. A server could be put in

a secure room with an alarm system where only one person has access. There could

be multiple network connections, multiple servers, with fail over, a daily backup

system, and so on. Nevertheless, solving these issues is very involving and requires a

lot of maintenance. Smaller companies or even home users will not take the necessary

precautions to protect their data.

Seeing this, there must be an easier way to manage data files. A simpler method

must exist, that enables the average user to take advantage of the networked world,

without buying expensive hardware or hiring an expert. This, however, calls for a new

paradigm in networked computing.

2

Paradigms of computer networking have changed over time. When the first

multi-user computers where introduced, they used the server-client paradigm. One

large server would handle all the time-consuming tasks, and multiple, so-called "dumb

terminals" did nothing but interaction with the user. Should the server fail, no users could

work. The next big trend in the computer industry was the personal computer. Instead of

being dependent on other hosts, now each user had their own personal computer. Failure

in this case would result in this person's data could be lost, but no one else would be

affected. Handling many of theses systems was a difficult task for administrators. They

had to physically sit at the computer and disturb the user for each maintenance task.

Therefore, people began networking their personal computers. They went back to the

client-server paradigm for some items, such as storage space, and used their personal

computers for other items, mostly computation. This is the current state in most computer

networks around the world.

Another networking paradigm has emerged in the current decade. It is called

peer-to-peer. In a peer-to-peer architecture, each client application is also a server and

each server application is a client. These applications are known as servents [47]. The

main idea is that instead of just consuming resources, like a client, or offering services,

like a server, a host will do both. Peer-to-peer software is used mostly in file-sharing

networks, such as bit-torrent. Instead of downloading a file from a single location, a

user can now download a file from every other user that already has this file. This saves

bandwidth and can vastly improve performance. Unfortunately, peer-to-peer networks

have a bad reputation due to most of the content found in these networks if copyrighted

material and should not be shared in the first place. However, peer-to-peer networks are a

very recent technology and an active area of current research.

The fourth and most advanced network paradigm is the one of service-oriented

computing. Peer-to-peer is already an advanced step, but why stop there? In

service-oriented computing, a service provider exists on the network. It could provide

computational power, storage space, or any other resource available on the provider.

Moreover, most important: it's location does not only matter, it may even change. If

a host becomes unavailable. The software for running a service does not need to be

installed on a computer. Any computer joining the network can automatically pick up

services, and provide them to all other computers. This provides a very dynamic and fail

3

proof network. SORCER, developed by Dr. Sobolewski at the Texas Tech University,

provides a framework to support service oriented computing. There have been several

thesis's researching the distribution of computational power, but so far none concerning

the distribution of storage space.

The questions to be answered are: Can a dynamic approach, such as

service-orientation, provide the reliability and stability required for a file system? And

if so, how can this be done? There are currently no existing file systems that use a pure

service-to-service approach.

To answer these questions, the SILENUS system was designed and built.

SILENUS is a distributed file storage system that is secure, failsafe and easy to use. It

uses a new approach: File storage should be a service where the user does not need to

know where, when, or on which hosts the actual file data is stored. Files are automatically

replicated and migrated. Data is encrypted and available only to authenticated users.

The SILENUS system introduces a new model for file storage. This model

splits up the file system into several independent services. There are gateway services,

to support existing applications. Data storage services store the information in the

system. Management services keep an overall overview over the system and provide

optimization. Each service can exist multiple times in the network, is independent, and

federates whenever a request is made.

Problem Statement

To design a revolutionary new distributed file storage solution providing

• The file system core features as defined in the section called “File system core

features”.

• The architectural qualities as defined in the section called “Architectural qualities for

distributed systems”.

• The use cases defined in the section called “Use Case Roles”.

Which is done using a newly formed model, for this application, as described in

Chapter 4, Architecture and Design.

4

Dissertation Outline

This dissertation is divided into six chapters. Chapter I introduces the problem of

storing data. It then gives an overview over this dissertation.

Chapter II describes the background research and literature review necessary

to understand the problems and the proposed solutions in this dissertation. It is written

in two parts. The first part describes existing file storage solutions. It examines their

advances and disadvantages, and how they relate to SILENUS. The second part looks

into different qualities for distributed systems.

Chapter III describes the detailed objective of the SILENUS solution. The

exact requirements are extracted from the knowledge about existing solutions and their

shortcomings.

Chapter IV proposes a new model based on the concepts and technologies

investigated in the background research. It describes an overall system architecture

based on the service-oriented paradigm. It then describes the design of the individual

components.

Chapter V describes a prototype based on the newly created model proposed in

Chapter IV. It looks at a specific implementation of the proposed solution. It will describe

details and algorithms that were necessary to solve problems that will appear during

the implementation. It describes which test cases where used to validate the proposed

solution. It also describes the operational validation of the prototype. It will show how the

prototype was deployed and tested.

Chapter VI summarizes the dissertation. It provides an overview over the lessons

learned. It compares the new solution with the existing ones. At the end, it will describe

further work and research directions.

The appendix contains the technical reference for the prototype implementation. It

shows the actual usage of the interfaces that where designed for the implementation.

5

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

The literature review and background includes two parts: In the fist part, existing

distributed file storage systems are looked at and analyzed. Their content will provide

a solid base for the current state of the art. In the second part, different techniques and

approaches are investigated. This is needed to make a good decision on which approaches

to choose for the actual design.

Existing model for remote file storage

To develop an architectural model for SILENUS it is necessary to look at existing

models for distributed file systems. Coulouris describes a basic model for distributed file

systems in his book [75].

Coulouris describes a basic model for a file service architecture consisting of

three components: a flat-file service, a directory service, and a client module. In this

model the flat-file service and the directory service export an interface to the client

module. The client module maps the calls from the local operating system to calls to the

file system.

The flat file service is concerned with operations on the contents of files. Files are

identified by UFIDs, which are unique identifiers for all files in the file system. When a

flat file service is asked to create a file, it creates an UFID.

The directory service provides mapping from textual file names to their UFID.

Clients can obtain an UFID by asking the directory service for a given filename. The

directory service is responsible for creating and browsing directories. Directories can

hold references to other files and directories.

The client module runs on the client computer. It makes both the flat file service

and the directory service available to the client computer under one interface. It provides

an adapter for the operating system file functions to calls to the distributed file system.

The client module is responsible for archiving performance through caching.

6

Figure 2.1. File service architecture according to Colouris

Model functionality

In Coulouris model, both the flat file service and the directory service provide

operations for the client module.

The flat file service provides support for the read, write, create, delete,

getAttributes, and setAttributes operations. Read and write are used to read and modify

file content. Create is used to create new files, while delete is used to remove existing

files. Get- and setAttributes are used to read and write file metadata.

The directory service provides the lookup, addName, unName, and getNames

functions. Lookup is used to retrieve the UFID for a given filename. AddName and

unName are used to add and remove files to and from directories. GetNames provides a

way to list file contents.

Additional terms

Coulouris also defines two additional terms for distributed file systems:

Hierarchic file system and file grouping. A hierarchic file system provides a

tree-structure for files. File grouping defines a collection of files that should be seen as

one unit.

The directory service already provides support for a hierarchic file system, since

each directory can contain files and other directories. This allows access to a specific file

by the use of a pathname: A multi-part filename that describes the path through the tree.

The root node has to be represented with a distinguished, well-known name. Lookup can

then be provided for files based on their pathname.

7

A file group is a collection of files on a server. Each server may host different

file groups, and file groups may be migrated from server to server. Therefore, file groups

have to be identified with a file group identifier. A file group identifier must be unique in

the network.

Shortcomings of the traditional model

The Coulouris model has several shortcomings. The first shortcoming is in the

distribution: Even though three components are identified, two of them have to reside

on the same host. Some of the functionality is duplicated in the client module. Another

shortcoming is the special importance of the file name attribute as opposed to other

attributes. Directories may not have any attributes at all in this model.

Coulouris distinction of three modules is a step in the right direction, but the

restriction that two of them have to reside on a server host and one of them has to

reside on a client host seems rather artificial. Splitting up the service architecture in

two modules provides several advantages. One of these advantages is scalability: If two

components provide distinct services and do not rely on each other, they can be run on

different server hosts. The Coulouris model does not use this advantage since it is based

on the classical client-server model.

In Coulouris model, some of the functionality of the server modules has to be

duplicated in the client module. Coulouris states that the client module has to provide

caching support. This requires keeping a local directory service and a local flat file

service. These local services are minimalized version of the ones available on the server,

and are therefore integrated in the client module. If the directory service and flat file

service would be more generalized, they could be re-used in the client module.

The attribute handling in Coulouris model is inconsistent. Coulouris defines a

special filename attribute that is to be used with the lookup service. This disallows the

use of the lookup service for other attributes, such as searching for a file by creation date.

For such a search each file would have to be first identified in the directory service, and

then its attributes retrieved from the flat file service. Directories may not have attributes

at all. They exist only in the directory service, which has no provision for querying

attributes.

8

Existing network file storage solutions

Before developing a new solution, one has to look at existing solutions. For once,

they might provide very good hints on what is done and what is still missing, but for

many people these existing solutions might already provide all the features needed.

This section will look at different existing network file storage solutions. Single

computer solutions are skipped, as this dissertation is about distributed data storage.

Different solutions will be looked at in the order of their complexity and the amount of

functionality they provide.

When looking at these file systems three types of file systems have to be

distinguished. The first type provides remote access to files, but these files exist in one

place only. NFS and CIFS are examples of such file systems. The second type provides

file replicas, providing better access and higher availability. AFS and Coda are examples

of replicated file systems. The third type of solutions is data grid solutions. These provide

full data management, mostly for high-performance computing applications. Globus

GridFTP and the Avaki data grid are example solutions.

Non-replicated remote file systems

Non-replicated remote file systems are network file systems where the actual

data exists in only one place on only one host. This usually means much less overhead,

and simplicity. However, it also means less safety in the case of failures. If the host that

contains the file is unavailable then the file will not be available.

Network File System (NFS)

NFS is the most widely used network file system in UNIX environment. It was

originally developed by Sun but is now available on almost any UNIX or UNIX-like

operating system. It is implemented as a set of remote procedure calls (RPC). It provides

only host-based authentication and only suggests obeying use permissions. File locking

was not possible until version 3 and still provides problematic between different

operating systems. Newer implementations of NFS provide a little more security, but

these are less used do to incompatibilities with other operating systems. NFS is not

reliable in the case of network failures: The administrator can chose between "fail" after

a certain timeout or "hang forever". Despite all shortcomings, NFS is a very fast network

9

file system with very little overhead. It works very efficient in local area networks

(LAN). NFS mounts can be read-only cached for improved performance. Migration of

data is impossible: Data is referenced by the server name and the location on the server.

[1, 2]

Migration and replication of data has been added to version 4 of the NFS

protocol. Unfortunately, this specification is still new, and so current implementations

are limited. Many existing clients are now just having a fully working NFS v. 3

implementation. Even in NFS 4, a server must still be available to tell clients about the

new location of their data. [5]

Common Internet File System (CIFS)

IBM developed CIFS under the name Server Message Block (SMB) protocol.

If was then re-used by Microsoft as their network file system protocol and then later

renamed to Common Internet File System (CIFS). It this system a user connects to a

specific storage on a specific server. Then she can use the remote disk space like any

local disk space. Locking and authorization are provided. The biggest drawback of CIFS

is that it provides user-based authentication only. An administrator cannot mount a file

system for all users and give them different permission. Despite other claims, CIFS

is very secure: Since every user has to authenticate, there is no need to trust the client

computer. User administration is needed on the server only. CIFS is the most commonly

used file system protocol in the windows world. It even provides browsing for available

shares. CIFS file systems can be easily migrated to different locations on the same server

host but not across multiple hosts. [14, 13]

Despite of these drawbacks, single replica file systems are still the most common

used. The main reason for that is their sheer simplicity. Any new remote file storage

will have to compete with that. Even though solutions that are more sophisticated are

available, most UNIX-like systems still use NFS, and most Windows-systems use CIFS.

10

Replicated file systems

Replicated file systems keep their data on more than one server. There will always

be multiple copies of each file. The advantage is that now only one of the host has to be

available. This helps to provide availability in the case of hardware and network failures.

Multi-replica file systems are more sparsely used. They require a substantial amount of

administration.

Andrew File System (AFS)

The Andrew File System was originally developed at the Carnegie Melon

University (CMU). It was then continued by IBM, and eventually made open source.

AFS was intended as a replacement for NFS on UNIX hosts. However, the AFS software

is available for all common operating systems. AFS has a wide variety of features: The

user does not need to know where the physical file is, only the address of an AFS master

server. The master server and all data can be replicated. Replicas are usually read-only,

but can be made the upgraded to the master copy in case of a permanent failure. The

client software usually creates caches the data locally, giving better performance. AFS

security is handled via Kerberos, which is a common standard for authentication. AFS

data is not encrypted. The number of replicas of a file depends on what store the file is

in.[48]

AFS is a very good distributed file system. Many larger organizations such as

large companies and Universities use it. One major drawback used to be high license

fees, which has disappeared since the software was made available as open source.

The biggest problem with AFS is the time it takes to set up. Configuration is very

complicated. It is easier if a Kerberos server is already in place, but it will still take a long

time. This makes AFS unusable for the small work group or the home user.

Coda

Coda is also developed at the CMU. It is based on the code of AFS. Coda

provides additional features: read-write replicas and hoarding. Coda even has conflict

resolution: Should the network connection between two servers fail while two clients are

writing on them it will automatically detect conflicts and provide both files. Coda also

requires OS support, which is only available for a limited number of operating systems.

11

Coda is still in an experimental stage, and not recommended for production use. Code

provides some kind of security; unfortunately, some of it has been cut out due to the

encryption export restrictions of the USA.

Coda provides very interesting features: Especially the disconnected operation

and automatic conflict resolution in code is very sophisticated. Unfortunately, the setup

of Coda still requires a lot of manual administration.[15, 16]

Data grid solutions

Data grid solutions try to provide common data for computation intensive,

distributed applications. They usually require specially written applications to function

properly.

Globus file store

The file storage system in Globus was invented from a different viewpoint. While

the others tried to supply a file system to all legacy applications, the Globus system

tries to supply efficient file storage to new applications, which are specifically written

for the Globus system. The Globus system is used to for distributed computing. Since

this usually involves large data sets, the focus here was on performance. Files can be

downloaded from multiple sources to prevent server overload.

The Globus file storage system has very good ideas. The main drawback is its

incompatibility with legacy applications and that it never was meant to be a file system

for legacy applications. [17, 18, 19, 49]

Avaki

Sybase Avaki Enterprise Information Integration (EII) provides a comprehensive

grid data management solution. It stores data at different locations but provides one

common interface to the user application. It combines data from different sources on

different hosts and different locations in a unified view.

Avaki does not use replicas for redundancy. It provides cached replicas to

support faster access. Administrators may even write to these replicas. The replication

process is optimized for already existing fast and reliable network infrastructure in high

performance computing labs.

12

Avaki originally started out at the University of Virginia under the name Legion.

It was commercialized in 2000. Sybase bought Avaki in 2005. It was then integrated into

their line of data oriented services.

The original Legion software was seen as a grid portal rather than a data

management solution. It provides unification of different data sources and access through

the same interface. The common interface makes Avaki interesting.

A major drawback of the Avaki software is its cost. Being commercial software,

the initial costs are very high. The software requires an existing, reliable infrastructure.

As such, it may be good for larger organizations but is unfit for the end user.

The Avaki software is unable to handle disconnected operations. Accessing data

from its original source means that the original source must be available: the network

must be working, the host must be up and the software must be running. All these

assumptions can only be made in a very controlled environment that hardly exists outside

of lab conditions. [20, 21, 22, 23, 24, 50]

Other existing file storage solutions

The solutions described here are some of the most commonly used distributed file

systems. There are several other file systems that each try to solve a specific question.

The Lustre File system is a file system developed for high-speed, robust file access in a

cluster computing system [25, 51]. Google has developed a propriatary file system that is

used for their internal data storage. It is geard toward their specific needs of storage and

high-speed access [26]. These are just two examples of other specialized file systems.

These file systems have in common that they are optimized for a specific need and are

not intedend for general use.

File system core features

A set of distributed file system core features can be defined based on the analysis

of the existing file storage solutions. Table 2.1, “File system core features on remote file

storage solutions” shows these features and gives an overview of the existing remote file

storage solutions:

13

Feature NFS CIFS AFS Coda Globus Avaki SILENUS

Remote access Yes Yes Yes Yes Yes Yes Yes

Migratable on the

same host

>= 4 Yes Yes Yes Yes Yes Yes

Migratable onto

another host

>= 4 No Yes Yes Yes Yes Yes

Replicated No No R / O R / W R / O R / W R / W

Self optimizing No No No No Yes Yes Yes

Self managing No No No No Yes Yes Yes

Easy install Yes Yes No No No No Yes

Compatible with

existing software

Yes Yes Yes Yes No No Yes

Table 2.1. File system core features on remote file storage solutions

Architectural qualities for distributed systems

When designing a distributed system, several architectural qualities have to

be satisfied. First, these qualities have to be identified. Existing solutions have to be

investigated. Then possible solutions will have to be proposed.

Transparencies

A good distributed system should provide network transparencies. These

transparencies are defined by ISO, however most applications do a poor job of providing

all of them. To make SILENUS easy to use, all of these transparencies should be

provided: [12, 71]

• Location transparent: it shouldn't matter where the file is stored

• Access transparent: all elements in the file store should be accessible from classical,

non-SORCER programs.

• Replication transparent: there should be no difference on what replication the user

works

14

• Failure transparent: the system should still work even if a significant number of hosts

are down.

• Read concurrency transparent: multiple users should be able to read the same file at the

same time

• Write concurrency transparent: multiple users should be able to write to same file at

the same time

• Migration transparent: the system or the user should be able to migrate the physical

presence of a file without interrupting any work.

Confidentiality

One of the most important features of any distributed file storage solution is

confidentiality. Confidentiality here means that only authorized people are allowed to

view the files stored in the system. In a distributed system, this becomes even more

important since files are stored on multiple systems. Even an administrator on one system

should not necessarily be allowed to view all files stored on a particular device.

The term confidentiality is used in contrast to the usual term privacy. Privacy can

have other meanings, where confidentiality is clearer in describing that only authorized

people are able to view certain content.

Most of the existing file storage solutions check users' credentials. Once a user is

authenticated, she has full access to all her data. Unfortunately, administrators can very

often bypass the credential checks. Most systems allow administrators to impersonate

any user on their system. While this is a good solution for single systems, where an

administrator should have full rights, this can be a problem in a distributed system. Users

may very often have administration rights on their personal work computer, but they

should not be able to read data from other users on the same network.

Even if the user does not have administrative access, network ports are very often

unsecured. In many cases, organizations provide network ports for guests, or students in

the case of universities. These public ports can very often be used to listen into traffic on

the network. A solution may be not to provide any public ports, but some of them might

be outside of the organization: A user might want to access her data over the Internet, and

there is no telling who could be listening.

15

Another security hole is direct access to the storage hardware. Even with no

administrative rights, users can very often boot systems from an alternative medium

and acquire administrative access. This can be prevented; however, there is currently no

defense against someone physically taking a hard drive out of a computer. Making the

hardware inaccessible is easily possible in large organizations. The servers would have to

be put in a dedicated room with security cameras. Only highly trusted personnel would

have a key. All the data will be stored in the server room; no data will be stored on the

users' computers. Unfortunately, this solution is impossible for smaller organizations. It

also makes redundancy almost impossible to acquire.

Encryption solves the problem of confidentiality: Instead of storing data in

so-called plain format, the data is encrypted and then stored. To decrypt the data, a

decryption key is needed. These keys are much smaller than the actual data. Current key

sizes range from about 128 - 4096 bit. Storing a 4096-bit key takes up only 0.5 kilobytes

of space and can safely encrypt several gigabytes of data. Sophisticated methods to

secure encryption keys have been developed. Most common are pin-numbers, pass

phrases and smart cards. [72]

There are two main types of encryption: symmetric and asymmetric encryption.

Both have their advantages and disadvantages.

Symmetric encryption

In symmetric encryption, the encryption and decryption key are the same. The

main disadvantage is that no data can be encrypted without the decryption key present.

Therefore, no one can leave data in the system for other people to read unless that

person has access to the same key. Symmetric encryption therefore requires a lot of trust

between involved parties. The main advantage of symmetric encryption is its speed.

Symmetric encryption with short key length can be done very fast. The most widely used

symmetric encryption algorithms are DES, blowfish and AES. DES and AES where

standardized by the U.S. government for use in commercial applications. [7, 8]

16

Asymmetric encryption

In asymmetric encryption, the encryption and decryption keys complement each

other. Data can be encrypted with one key, and decrypted with the other. The main

advantage here is that the encryption key can be made public: It is almost impossible

to calculate the decryption key from the encryption key. This is by far more secure

than symmetric encryption: The encryption key can be made public knowledge.

Unfortunately, asymmetric encryption is by far slower than symmetric encryption and

requires longer key length. The most widely used asymmetric algorithm is RSA. [27]

Encrypting decryption keys

Both symmetric and asymmetric encryption can be combined: In current

applications, each individual data file is encrypted using symmetric encryption with

a random encryption key. This encryption key is then encrypted using asymmetric

encryption with the users' asymmetric key. The encrypted symmetric key is then attached

to the data file. This method combines the speed of symmetric encryption with the

security of asymmetric encryption. It also allows files to be available to a group: The

symmetric data key is simple encrypted with multiple asymmetric keys.

This combination has the advantage that a different symmetric key can be

generated for every stored item. The encryption keys do not repeat, so a smaller size key

can be used. If the encryption on a file is broken, one that one file will be compromised.

Smaller keys allow for greater speed and flexibility.

The second advantage is that a user can physically carry the secret asymmetric

key. It could be saved on a disk, USB key, smart card, or some other small device. This

allows the data to be encrypted on the users' computer. It will not be sent unencrypted

through a public network. It will never be decrypted on the computer responsible for the

actual storage. Thus, administrators and eavesdroppers will not be able to view any data

they are not supposed to.

Existing cryptographic libraries

Instead of relying on a certain implementation, it is important to rely on a

cryptographic library that has exchangeable algorithms. Cryptographic algorithms come

and go. What is considered safe today may be considered flawed in the near future.

17

To cope with this, the algorithms themselves should be exchangeable. Cryptographic

libraries provide support for multiple algorithms. The most common used library for the

language C is gcrypt. There are several libraries for Java. Fortunately, Sun has developed

a standard for Java cryptographic extensions (JCE). All cryptographic libraries based on

JCE are exchangeable. [52, 9]

Global availability

In today's world, uses switch computers very frequently. A user may have a work

computer and a home computer. However, the data should also be available at colleagues

work computer, a friend's computer, or at a computer in an Internet café halfway around

the world. Nevertheless, not only full computer systems, but also smaller devices such

as cell phones and PDAs are now connecting to the Internet. A user's data should not

only be restricted to the use of desktop computers, but should be available on any device

anywhere.

In most cases, the users will not have the necessary administrative rights to

install file system drivers. In some cases, like the home and work computer, this is

no problem. However, installing software in an Internet café is usually not possible.

Therefore, any file storage solution must be able to work with existing operating systems

and applications.

Providing support to existing application is an important feature in remote file

storage solutions. After all, it is very unpractical to store data and not being able to use it

with existing software. Any new file storage solution should provide support for existing

application by offering a support for as many operating systems as possible.

WebDAV

The Web Distributed Authoring and Versioning specification (WebDAV)

provides a new standard for remote file storage. The name itself is ill chosen: WebDAV

has nothing to do with the web, but rather with file storage over the Internet in general.

It does not provide version information as the name suggests, but this is added by an

extension called DeltaV.

18

So what does WebDAV specify? WebDAV extends the hypertext transfer

protocol (HTTP) with file management function. The original HTTP specification

provides support for authentication, uploading, and downloading of files. WebDAV

provides additional functions for listing, moving, deleting, and locking files. This

provides basic file management functionality. Two extensions to WebDAV provide

support for versioning and more sophisticated access control lists (ACL). [3, 4, 6]

The WebDAV standard provides several option levels. Option level 1 provides

basic functionality for upload, download and managing of files. Option level 2 provides

support for file locking. The DeltaV and ACL extensions provide additional option

levels. Each implementer may choose which option levels to implement in their product.

WebDAV support is built into most modern operating systems: Windows and

Mac OS X provide native support for WebDAV. Any WebDAV storage can be mounted

and used (almost) like a local file system. Both GNOME and KDE provide very good

support for data stored in WebDAV. All of these have to be looked at in detail:

All Windows versions since Windows 98 support WebDAV. Microsoft calls it

"Web Folders". A WebDAV folder can be mounted like any other file system by going

to "My Network Places", selecting "Add Network Place" and then typing in the address

in the http://server/folder format. The WebDAV folder then appears like any other

network folder on the system. Unfortunately, files cannot be edited directly on the server;

they have to be copied to a local directory, edited and then uploaded again. Fortunately,

many software vendors implement WebDAV support directly into their applications.

Among the most notably are the Microsoft Office products and the Adobe Creative Suite.

At the time of this writing Mac OS X has the best built-in WebDAV support of all

major operating systems. A WebDAV folder can be mounted like any folder in the Finder

under Go / Connect to server. Mac OS X has full read-write support. WebDAV folders

can be used like any other local drive.

The only shortcoming of Mac OS X is that the Mac OS file systems store a file

in two parts: The actual file, and a so called "resource stream". This resource stream

contains additional information, such as the file icon. On non-HFS (the Mac OS native

file system) file systems, these resource streams are emulated with files that start with

dot-underscore (._). Ideally, a file system driver should know about that and emulate the

appropriate information.

19

UNIX users that use the GNOME desktop are lucky: The standard file browser

in GNOME is Nautilus, which supports WebDAV folders like any other folder. Simply

type the address of a WebDAV folder in the address bar, and you can browse the

files. Unfortunately, you cannot open files directly, so you have to do the same as on

Windows: Copy the file to a local directory, edit it, and copy it back.

Cadaver is a very simple WebDAV client for all UNIX systems. Its interface

is the same as the standard command-line FTP client found on all UNIX systems. This

makes cadaver somehow tedious to use, but makes it highly portable. Use cadaver if you

cannot use any of the other methods.

Davfs2 is the project of building WebDAV support as a file system into the Linux

kernel. Unfortunately, at the time of this writing this project was still in beta stage. [53]

Web-based access to file storage

A web application framework provides the infrastructure necessary to run

applications over the Internet. Traditional web servers have support for static web pages

only. Web applications however require interactive content. Some solutions work on

the client. Client-side Java, Java script and Active-X are the most common examples.

These solutions, however, require special support and software installed on the users'

computer. Other solutions run the application on the server. They provide a user interface

by providing HTML pages and using HTML forms for interactivity. They may use

client-side software, but do not require it. These solutions provide more security. Users

do not need to run applications on their own host. Examples of such technology are Java

Servlets and Java Server Pages.

Java Servlets and Java Server Pages (JSP) allow the provision of dynamic content

on web pages. Traditional web pages are static and have to be manually updated on the

server side. With server-side technology, such as Servlet and JSP code can be executed

whenever a website is requested. This enables dynamic web applications such as web

shops. While static web pages can be protected by authentication, the pages served if

authenticated are always the same. Dynamic web pages can provide different content to

different users. They may also add special request and response codes to the web page.

[61, 62]

20

James Gosling first thought of Servlets in 1995. Later Pavani Diwanji picked up

the concept and created Servlets that would eventually be part of the Java Web Server.

James Davidson wrote the first Servlet specification. Java Server Pages were conceived

by Anselm Baird-Smith, and later specified by Satish Dharmaraj in 1999. [63]

A Java Server Page is a shortcut version to a Servlet. Most Servlet just wanted

to add a little dynamic content to an already existing web page instead of creating a

completely new page. A JSP is a small part of Servlet code that is added in an otherwise

valid HTML page. It is executed and its results are added right there into the page. It is

usually a good compromise between just code (Servlet) and just content (HTML).

The big advantages of Java Servlets and Java Server Pages are the dynamic

nature and the large existing software library. Java Servlets allow dynamic content to be

created. They may go from as little as just one line of code to reprogramming the HTTP

protocol and adding new network commands. There are several solutions for dynamic

web applications. JSP and Servlets, however where not just invented for dynamic web

applications, and can therefore fall back on a large library of existing software packages.

In addition, since they are Java based they work on almost any web server platform.

As with all interpreted programming languages, there is a performance loss. This

may not be so significant on a single-user system but on a web page with millions of hits

every day, this is an issue. Fortunately, the Java interpreter provides extensive run-time

optimization with its Hot-Spot engine. Nevertheless, Java Servlets will always use more

memory and CPU than native applications would.

Disconnected Operation

Ideally, the Internet would be available everywhere on the world through a

high-speed connection. Unfortunately, this is not the case yet. On the other hand, human

expectations are more and more global. Data should be available everywhere whether

connected to the network or not. Increasingly users want to use mobile devices, such as

laptops. A distributed file storage system should have support for accessing files offline.

Even in places where the network is usually available, there are still many

network outages. Wired networks at any organizations fail at some point in time. In this

case, a distributed file system should not loose any data. It should still provide support for

saving and accessing cached files.

21

The first step to provide support for disconnected operation is to except

disconnection. Many existing systems assume that the network is reliable, as stated in

the section called “Eight fallacies of distributed computing”. Instead, the exact opposite

should be expected: Each host works independent, and uses data from other hosts if

available. If not, it should carry on.

Each node will still have to collaborate with other nodes. They need to provide a

synchronization mechanism. This synchronization mechanism should not depend on any

global state, but rather detect the states of the nodes automatically. It should then try its

best to synchronize the data in the two nodes.

Sometimes disconnection is predictable. In this case, a distributed file system

should provide support for hoarding. A user may decide to work on certain files at home.

She plugs her computer in at work, selects files for offline work. After a while, these files

are made available on the users' computer for offline usage. Whenever the user connects

back to the network, the files are synchronized with the rest of the file system.

Manageability

As soon as a system grows larger, or it has been used for a while, it becomes more

difficult to manage. In the case of a file system, this means many files, from many users,

on many hosts. Several problems arise here.

Managing many files is mostly the task of migrating and replicating them among

multiple hosts. Files should be available on multiple hosts for safety. They should be

available on different hosts to not overload a single host.

A large base of users is another manageability challenge. Each user should have

access to different files in the file system, and only to these files. User access rights have

to be managed. One single person cannot do this; there must be a way to delegate access

rights to local administrators.

Hardware failure and adding hosts is a managing problem. When a host fails,

all the files that where on this host will have to be moved to other hosts. To do so, they

should have been backed up or replicated to another host beforehand. When a new host

becomes available, files have to be moved to this host to utilize this new host.

22

One way to provide better manageability is to use federated services. In a

service-oriented approach, each host provides services. Services are automatically

discovered and used when they are available. These services can easily be moved from

one host to another.

Some of these federated services are autonomic optimizer services. These services

can make the decisions a human administrator would make. They can check the current

available resources and make sure they are used according to the policies set by an

administrator. Since federated services are loosely coupled, different optimizer services

can be added and removed based on the needs of a particular system.

Scalability

Another problem arising from a larger file system use is that of scalability. A

system should still perform well, no matter how many hosts, files, and users it serves.

Scalability can be achieved by distributing services across multiple hosts. If a

service is available on only one host then this host will eventually be overloaded. By

making it possible to have services available on as many hosts as needed, scalability can

be provided by adding extra hardware.

A paradigm switch has to be made from client-server to federated services.

Classical client-server solutions do not provide good scalability. They depend on a single

server. As soon as the number of requests increases, so does the load on the server.

Federated services, on the other hand, provide a way to load-balance the system. Instead

of sending all requests through one server, the same functionality can be provided by

many services. A requester can pick a service with a low load. Should all services be

overloaded, an administrator can add extra hosts.

Reliability

A quality that is particular important for file systems is reliability. A file saved

into a file system should stay there until deleted. Files should never disappear or get lost.

Unfortunately, most existing file systems move the responsibility for reliability to the

underlying hardware. Should the hardware fail, the files are lost.

23

Reliability can be achieved by replication. In the case of a distributed file system,

this means replication among different hosts. Every file that should be stored reliable

needs to be available on at least two hosts at any time. Should one host fail, there is still

another copy available. There should be another backup copy of that made as soon as

possible to provide reliability again.

Modifiability

Software systems are never stable. They evolve into newer systems. There are two

main reasons a software system needs to evolve: bug fixes and new features.

Every software has bugs. Humans write software, and humans make mistakes.

Even the best computer scientists make mistakes [54]. Therefore, no matter how well

software is written and tested, it will always need to be updated to accompany new bug

fixes.

After a while, users grow tired of an existing system and demand new features.

Maybe a new device just came out, but the current computer system does not support it.

Maybe different people who have a different focus and want different features now use

the system. In these cases, the system needs to be updated to add new features to it.

Dynamic code loading helps to provide modifiability. When an update is available

in classical systems, an administrator has to manually download and install this update.

This works well on a single host, but is very hard to manage for multiple devices. It is

even worse if there are multiple administrators, but a new version has to be rolled out

immediately. With dynamic code downloading, the software checks for a new version

and downloads it whenever it starts. Rolling out a new version is as easy as publishing

a file on a server. All that is needed is for the modified parts of the software to be

reloaded. This may also be triggered from the network. With dynamic code downloading,

system-wide administrators can assure that all nodes have the latest version.

Platform independence

Existing computing devices use a wide variety of processors and operating

systems. Supporting each of them with a custom solution is a major undertaking. An

easier solution is using a virtual machine. An application would have to be written for

that virtual machine. Only the virtual machine has to be ported to different platforms.

24

The programs are compiled into byte code. This byte code can be reused on any of these

virtual machines. This makes code mobility possible. The most commonly used virtual

machines are the Java virtual machine and .NET.

An example virtual machine specification is the Java virtual machine (Java VM).

Originally specified by Sun it is now being developed through a community process.

Byte code that is compiled for a certain version of the Java virtual machine will run on

any JVM that complies with these specifications. Example Java VM implementations are

provided by Sun, IBM, Apple, and several open-source development teams. [10, 55, 56,

57, 58]

Originally intended to run on home appliances, the Java VM is now available on

all modern desktop and server operating systems. The Java environment provides both

an object-oriented language and a runtime system. The language is similar C++, which

used to be the most widely used programming language. The runtime system provides

the same functionality across all platforms. Java is a true write once - run everywhere

language. Even modern mobile devices, such as personal digital assistants (PDA) and cell

phones now provide support for the Java platform. In the heterogeneous environment of

the Internet, there is almost no way around a platform independent runtime system like

Java. [59, 60]

Java also provides many built-in libraries. Unlike traditional programming

languages, the Java standard requires a wide range of standard features. If a given

Java runtime version is installed on a particular host, all standard libraries will have be

included.

Service Orientation

Service oriented architectures provide most of the given architectural qualities

for distributed systems. It is therefore necessary to investigate service orientation and

understand how it functions.

Eight fallacies of distributed computing

To understand the motivation behind the service-oriented paradigm the common

fallacies of network computing have to be investigated first. Peter Deutsch defined eight

fallacies of network computing as follows: [66]

25

Essentially everyone, when they first build a distributed
application, makes the following eight assumptions. All prove to be false
in the long run and all cause big trouble and painful learning experiences.
1. The network is reliable
2. Latency is zero
3. Bandwidth is infinite
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is zero
8. The network is homogeneous

In a service-oriented system, none of the assumptions is made. Instead, it is

always assumed that these eight points are false.

Generations of Remote Procedure Calls

Two different levels of network communication exist: protocol based network

communication and procedure based network communication. Procedure based network

communication has evolved in the recent years.

Protocol based network communication concerns itself with direct input and

output communication. Applications read and write raw data, usually through network

sockets. The protocol has to be exactly specified. This is a very low level form of

network communication and it is very error prone.

Instead of focusing on the language, it is more desirable to focus on invoking a

method on the remote host. This is the idea of procedure based network communication.

Procedure based network communication introduces a remote procedure call (RPC). This

provides the programmer with a higher level network programming.

There are six generations of RPC specifications. The first generation is that of

Sun RPC and others. It defined a protocol for support remote procedure calls that are

language, architecture, and operating system independent.

The second generation of RPC, of which CORBA is an example, introduced

support for objects. The original RPC specifications where written before the

object-oriented concept was fully developed. Once object-orientation became more

common, a new generation of RPC protocols was needed.

26

These RPC specifications made it possible to call existing code on remote hosts.

The third generation of RPCs, such as Java RMI, introduced behavioral transfer. Instead

of just calling a method on a remote system, actual behavior in the form of code could be

send to another system for execution.

The next and fourth generation of RPC, introduced by Jini JERI, uses dynamic

proxying. In previous generations, a precompiler would have to be used to generate

network stubs and skeletons that wrapped the network calls for the user. With dynamic

proxying, no preprocessing step is necessary. Any existing object can be exported and

made remotely accessible.

The fifth generation of RPCs is the generation of web-services. Web-services use

an XML-based protocol over HTTP for communication. This allows for services to be

deployed using existing web-server installations.

The sixth and most current generation of RPC is the service oriented program,

which is provided by the SORCER framework. Instead of communication with one

specific server, a method invocation can be executed by any host that runs a matching

service. A single invocation may even span multiple hosts. These hosts will federate

together to provide the requested service.

Service Oriented Architecture

Instead of thinking of a service offered by a particular host, the paradigm shift

should be towards services in the network — the computer is the network. In classical

distributed applications, it is necessary to know exactly on which host a particular service

is exposed. In most distributed file systems, for example, it is necessary to know the

name of the host that stores a particular file. In a service-oriented environment, a service

provider registers itself with a service registry. The service registry facilitates lookup

of services. Once a service is found, a service requester binds to the service provider

and then can invoke its services. Requesters do not need to know the exact location of a

provider beforehand. Instead, they can find it dynamically. They discover a registry and

then lookup a service. On the other hand, a provider can discover the registry and publish

its own service, as depicted in Figure 2.2, “Discovery in Service-Oriented Architecture”

and Figure 2.3, “Execution in Service-Oriented Architecture”.

27

Figure 2.2. Discovery in Service-Oriented Architecture

Figure 2.3. Execution in Service-Oriented Architecture

A service is identified by an interface (type) rather than its implementation,

protocol, or name. If a service provider registers by name, the requesters have to know

the name of the service beforehand. Registering services by interface has the advantage

that the actual implementation can be replaced and upgraded independently from

the requesters. Different implementations may offer different features internally, but

externally have the same behavior. This independent type-based identification allows

for flexible execution of service-oriented programs in an environment with replicated

services.

28

A service-oriented program is composed of tasks, jobs, and service contexts.

Figure 2.4, “Service oriented Tasks and Jobs” shows an example of service tasks and

jobs. These concepts are defined differently than in classical grid computing. A service

job is a structured collection of tasks and jobs. A task corresponds to an individual

method to be executed by a service provider. A service context describes the data that

tasks works on. This approach is different from classical grid computing, where a job

corresponds to the individual method. In UNIX analogy, the individual tasks correspond

to UNIX programs and commands. The context would be the input and output streams.

A job corresponds to a shell script or a complex command line connecting the tasks

together. Service-oriented programs can be created interactively and allow for a federated

service environment. [32]

Exe rtionIm plExe rtionIm pl

<<inte rfa ce >><<inte rfa ce >>
Exe rtionExe rtion

e xe rt(S e rvice re xe rt(S e rvice r): Exe rtion): Exe rtion

e xe rt(S e rvice re xe rt(S e rvice r): Exe rtion): Exe rtion

S e rvice Ta s kS e rvice Ta s k

e xe rt(S e rvice re xe rt(S e rvice r): Exe rtion): Exe rtion

S e rvice J obS e rvice J ob

e xe rt(S e rvice re xe rt(S e rvice r): Exe rtion): Exe rtion

Figure 2.4. Service oriented Tasks and Jobs

In a federated service environment, not a single service makes up the system,

but the cooperation of services. A service-oriented job may consist of tasks that require

different types of services. Services can be broken down into small service methods

instead of providing one huge all-embracing service. These smaller methods then can be

distributed among different hosts to allow for reusability, scalability, reliability, and load

balancing.

29

These grid concepts cannot just be applied to computational tasks. They can, and

should be, applied to data as well. Once a file is submitted to the network, it should stay

there. It should never disappear just because a few nodes or the network segment goes

down. In addition, it should not matter what client node is used to request the file. With

the SILENUS distributed file system in place, SORCER will also provide reliable and

scalable file-based data services complementing the existing method services.

Jini Network Technology

The Jini network technology enables Java software to create dynamic networks

that are adaptive to change. Jini uses a Service Oriented Architecture approach to

network services. It is especially useful for scalability, evolvability and flexibility.

Services can easily be replaced in runtime, started on multiple servers, or even migrated

form one computer to another. [28, 74]

Jini technology was originally created by Sun. It was then contribute to the Jini

Community in 1999. It is based on an open specification that can be developed through a

community process. The reference implementation is provided still provided by Sun.

Jini provides almost everything necessary for service oriented computing, as

described in the section called “Service Oriented Architecture”. Jini makes it easy to

write services. Each service can register with a service registry. Service registries can be

discovered by multicast announcements. Service requesters may use the service registry

to find services and use them.

The dynamic nature of Jini is handled with leases. Each network service

registering with another network service must obtain a lease. The lease must be renewed

in given intervals or it will expire. This allows the detection of unreachable nodes, while

putting the actual load on the requesting object, not the provider. Lease times may be

adjusted depending on the stability of the network involved. A reliable network can work

with higher lease times, while it is very desirable to have shorter leases in unreliable

networks to detect disconnection quickly.

Jini also provides a standard to attach user interfaces to services. This ServiceUI

standard allows the development of Jini service browsers. A Jini service browser will

pick up all the registrars and display their services. If a service has an attached user

30

interface, the service browser can download and display that user interface to the user

without having to install or configure any software locally. One example of such service

browser software is the IncaX Service Browser. [11, incax]

Peer-to-peer networking

Another network technology widely used for modern distributed architectures

is peer-to-peer networking. In peer-to-peer applications, each peer is equal. Peers

communicate through an overlay network directly with each other. This eliminates the

classical bottlenecks in client–server solutions.

Unfortunately, peer-to-peer has a bad reputation. It was first widely used by the

application "Napster". Users were able to share music files with other users in a fairly

fast and reliable way. In the peer-to-peer architecture, files are downloaded from other

users rather than a central server. This makes peer-to-peer technology hard to control.

It is therefore very often used for illegally distribution of files. Some companies even

want to ban peer-to-peer technology because of that. However, peer-to-peer also has

many legitimate uses. Most Linux distributions are now released through peer-to-peer

technology to save server capacity and increase download speed. Common peer-to-peer

applications today include Gnutella, KaZaa, eDonkey, BitTorrent, and JXTA.

JXTA (short for Juxtapose) is a set of protocols that allow any device on the

network to communicate and collaborate. JXTA provides an overlay peer-to-peer

network that clients can use to communicate with each other. The JXTA protocols are

defined language independent. A reference implementation for Java exists and is very

stable. [65]

Bill Joy and Mike Clary from Sun Microsystems started the JXTA project

originally. The specifications and implementation where then made open-source and

available on the JXTA web page.

JXTA focuses on peer-to-peer technology. Discovery in JXTA is made by

the provider sending out service advertisements. These have to be sent out regularly

for service requesters to find them. So-called rendezvous peers can cache these

advertisements. Once a requester has found a service advertisement, it can use the JXTA

overlay network to acquire a virtual channel between the requester and the provider. This

channel can then be used to send messages back and forth.

31

JXTA is built for far distributed peers in an unstable network. A cached

advertisement may provide a link to a service that has not been existent for a long time. A

service must therefore be actually contacted before any assumption about its availability

can be made.

When comparing JXTA and JINI the first distinction is the range of its

application. JINI is designed for local area networks (LAN) and can be used over WANs

with the use of special proxies. JXTA is designed for wide area networks (WAN) and

all its network overlay is based on that. Fortunately, these two can be combined: Jini

requests can be sent over the JXTA network. This provides the best of both worlds: Fast,

optimized local access and reliable remote access via the JXTA network. [29]

SORCER

SORCER is a federated S2S framework that treats service providers as network

objects with a well-defined semantics of service-object-oriented (SOO) programming

based on the FIPER technology. [30, 31, 32]

Each SORCER provider offers services to other peers on the object-oriented

overlay network. These services are exposed indirectly by methods in well-known

public remote interfaces and considered as elementary (tasks) or compound (jobs)

program instructions of SOO programming methodology [30]. A SORCER program

can be created interactively [32] or programmatically (using SORCER APIs) and

their execution can be monitored and debugged in the overlay network [33]. Service

providers do not have mutual associations prior to the execution of a SOO program;

they come together dynamically (federate) for all component tasks and jobs in the SOO

program.

Each provider in the federation executes a task, or a job. A special SORCERS

infrastructure services called jobber coordinates these jobs [30]. However, a job can be

sent to any peer. A peer that is not a jobber is responsible to forward the job to an existing

jobber in the SORCER grid and return results to the requester. Thus, any peer can handle

any job or task. Once the job execution is complete, the federation dissolves and the

providers disperse and seek other SOO programs to join. In addition, SORCER supports

a traditional approach to grid computing - like in Condor [34] and Globus [35] style.

Here, instead of SOO programs being executed by services providing business logic for

32

requested tasks, the business logic comes from the service requesters executable program

that seeks compute resources on the network provided by grid services. These services

in the SORCER grid are as follows: GridDispatcher and Jobber for traditional grid job

submission, Caller and Tasker for task execution. [36]

To integrate applications and tools on a B2B grid with shared engineering data,

the File Store Service (FSS) [37] was developed as a core service in SORCER. The

value of FSS is enhanced when both web-based user agents and service providers can

readily share the content in a seamless fashion. The FSS framework fits the SORCER

philosophy of grid interactive SOO programming, where users create distributed

programs using exclusively interactive user agents. However, FSS does not provide

the S2S flexibility with separate specialized and collaborating service providers for file

storage, replication, and meta information that are presented in this dissertation.

Eight truth of networked computing

Based on the fallacies given in the section called “Eight fallacies of distributed

computing”, service-oriented architectures take into account the following eight truth of

distributed networking:

1. The network can fail at any time

2. Network messages arrive in random order

3. The network is always too slow

4. Someone is always listening

5. Hosts get added and removed at any time

6. Every system has its own administrator

7. Moving data costs money

8. There will be any possible combination of OS / Architecture out there. They all want

to be part of the network!

Security in existing file storage solutions

In this section the security concepts of different existing storage solutions are

looked at. In particular, the granularity of security privileges is examined. Then the

different authentication mechanisms are looked at. And last, some privacy features are

discussed.

33

Privileges

Security privileges are usually defined through the underlying operating system.

A UNIX server sharing files may only export the UNIX permissions. Therefore, the

permissions are examined by their native operating system instead of the actual network

file system.

UNIX (NFS, GlobusFTP)

The UNIX permission model is the oldest and simplest of the models examined

here. Being simple is not necessarily a disadvantage: It is the easiest permission model to

learn and to apply. This has kept this model in use for over 30 years.

The UNIX model defines permission bits for owner, group, and others. The actual

permissions are for the first match and not the maximum permissions. A file owner

can actually exclude themselves from permissions for read and write. The owner or the

administrator may change file permissions.

The administrator in a UNIX system has full access rights to all files and

directories. This may be seen as an advantage, as the administrator may need to be

able to move files to a different location. It may also be seen as a disadvantage as the

administrator may read every personal file. The UNIX system does not provide any

confidentiality. Administrators must be trustworthy.

Newer UNIX systems such as Solaris define access control lists (ACLs) to extend

the basic permission model. These ACLs allow a more fine-grained permission model.

Instead of setting the permissions for one user or one group the permissions may now be

set explicitly for any user and any group. ACLs allow very powerful, fine-grained sets of

permissions, but are more difficult to manage. [67]

Access control lists are UNIX-implementation specific and are not compatible

between different operating systems. As such, extensions for ACLs exist as extensions to

the NFS 2 and 3, but they work only from and to Solaris systems. NFS version 4 defines

a standard for ACLs, but this protocol is not widely supported yet. Most UNIX and

UNIX-like systems still support only the basic UNIX permission model.

UNIX provides the three basic permissions read, write, and execute for files.

These attributes can be set for the file owner, a specific group, or everyone else. Read and

write are usually honored, while execute is more of a hint to the operating system. The

34

execute bit specifies that a file contains either binary code or an executable script. Two

special permissions setuid and setguid can be set on executable files to allow changing

the effective user and group. These special bits can lead to security problems and are

ignored in many NFS implementations.

The same three permissions are also defined for directories, but their meaning is a

little different than for files. Reading a directory means listing the files in this directory.

Write permission for a directory allows adding and removing files and links from that

directory, even if this entity does not have the specific rights for the file. The execution

bit for directory maps to opening and executing files in this directory, and also listing

directory contents. A directory with execute permissions can be traversed. Traversing

a directory means being able to access subdirectories and use all rights on that given

subdirectory. Since listing files is forbidden, the names of the subdirectories must be

known. A special permission bit for directories is the sticky bit. In a directory with the

sticky bit only the file owner and the administrator may delete files. This allows the

creation of common directories, such as /tmp where everyone has read and write access

on the directories, but not every user may delete every other users files.

Windows (CIFS)

On Windows the security depends on the underlying file system. The two most

common file systems for Windows are FAT and NTFS.

The FAT (file allocation table) file system is older and a remainder from the DOS

origins of the Windows operating system. The current version is the FAT32 system; older

versions are sometimes called FAT12 and FAT16. The FAT system has absolutely no

security features.

The NTFS (NT file system) was developed later for the more secure and robust

versions of Windows based on Windows NT. As such, it supports a complete security

model. Since all recent versions of Windows support NTFS, this is the model that will

now be called the Windows model.

Windows uses ACLs for users and groups. Every ACL may define an allow or a

deny bit. To calculate the actual permissions, the allow bits of all groups and for the user

itself are combined using a logical or. The same happens for the deny bit. A user has a

permission only if the allow bit is set and the deny bit is unset.

35

This model has received some criticism. If only allow bits are used, a user has

the maximum possible permissions. A user that is part of one group may suddenly have

more permissions than desirable. This may give a user to many rights. On the other

hand, the deny bits cannot be overwritten. If a user is part of a group for which a specific

resource is denied, even an allow bit for a specific user will not allow the user to access

the resource. This may give a user not enough rights.

Every file and directory on the NTFS has exactly one owner. Only the owner may

change the ACL and allow or deny rights to other users. Ownership of files cannot be

given to other users.

An administrator may not set file permissions. This is very different from the

UNIX administrator model. On Windows, an administrator may take ownership of

files and directories. Once the administrator is owner, the permissions may be changed.

Administrator may not transfer the ownership to other users. They may therefore not give

the ownership back to the original user. An administrator is therefore unable to read the

files of a user without the user being able to find out due to changed ownership.

The NTFS knows two sets of permissions: Basic permissions and special

permissions. In most cases the basic permissions are sufficient. The special permission

may be used if a more fine-grained permission model is desired.

The basic permissions for files are full control, modify, read and execute, read,

and write. The permissions for directories are full control, modify, read and execute,

list folder contents, read, and write. Some of these permissions include the lesser

permissions: A user with full control will also have all the other permissions. The

following tables are taken from [76]:

36

NTFS File

Permission

Allowed Access

Read This allows the user or group to read the file and view its

attributes, ownership, and permissions set.

Write This allows the user or group to overwrite the file, change its

attributes, view its ownership, and view the permissions set.

Read & Execute This allows the user or group to run and execute the application.

In addition, the user can perform all duties allowed by the Read

permission.

Modify This allows the user or group to modify and delete a file including

perform all of the actions permitted by the Read, Write, and Read

and Execute NTFS file permissions.

Full Control This allows the user or group to change the permission set on a

file, take ownership of the file, and perform actions permitted by

all of the other NTFS file permissions.

Table 2.2. NTFS basic file permissions

37

NTFS Folder

Permission

Allowed Access

Read This allows the user or group to view the files, folders, and sub

folders of the parent folder. It also allows the viewing of folder

ownership, permissions, and attributes of that folder.

Write This allows the user or group to create new files and folders

within the parent folder as well as view folder ownership and

permissions and change the folder attributes.

List Folder Contents This allows the user or group to view the files and sub folders

contained within the folder.

Read & Execute This allows the user or group to navigate through all files and sub

folders including perform all actions allowed by the Read and List

Folder Contents permissions.

Modify This allows the user to delete the folder and perform all activities

included in the Write and Read & Execute NTFS folder

permissions.

Full Control This allows the user or group to change permissions on the folder,

take ownership of it, and perform all activities included in all

other permissions.

Table 2.3. NTFS basic folder permissions

The special permissions allow a more fine-grained setting of possible

permissions. For files these are: execute file, read data, read attributes, read extended

attributes, write data, append data, write attributes, write extended attributes, delete,

read permissions, change permissions, take ownership, and synchronize. And the special

permissions for directories are: traverse folder, list folder, read attributes, read extended

attributes, create files, create folders, write attributes, write extended attributes, delete

sub folders and files, delete, read permissions, change permissions, take ownership, and

synchronize. The following table is also from [76]:

38

Permission Description

Traverse Folder /

Execute File

This allows or denies a user to browse through a folder's sub

folders and files where he would otherwise not have access. In

addition, it allows or denies the user the ability to run programs

within that folder.

List Folder / Read

Data

This allows or denies the user to view sub folders and fill names

in the parent folder. In addition, it allows or denies the user to

view the data within the files in the parent folder or sub folders of

that parent.

Read Attributes This allows or denies a user to view the standard NTFS attributes

of a file or folder.

Read Extended

Attributes

This allows or denies the user to view the extended attributes of a

file or folder, which can vary due to the fact that they are defined

by the programs themselves.

Create Files / Write

Data

This allows or denies the user the right to create new files in the

parent folder. In addition, it allows or denies the user to modify or

overwrite existing data in a file.

Create Folders /

Append Data

This allows or denies the user to create new folders in the parent

folder. In addition, it allows or denies the user the right to add

data to the end of files. This does not include making changes to

any existing data within a file.

Write Attributes This allows or denies the ability to change the attributes of a files

or folder, such as Read-Only and Hidden.

Write Extended

Attributes

This allows or denies a user the ability to change the extended

attributes of a file or folder. These attributes are defined by

programs and may vary.

Table 2.4. NFS special access permissions

39

Permission Description

Delete Sub folders

and Files

This allows or denies the deleting of files and sub folder within

the parent folder. It also true that if this permission is assigned

files and sub folders can be deleted even if the Delete special

access permission has not been granted.

Delete This allows or denies the deleting of files and folders. If the user

does not have this permission assigned but does have the Delete

Sub folders and Files permission, she can still delete.

Read Permissions This allows or denies the user the ability to read the standard

NTFS permissions of a file or folder.

Change Permissions This allows or denies the user the ability to change the standard

NTFS permissions of a files or folder.

Take Ownership This allows or denies a user the ability to take ownership of

a file or folder. The owner of a file or folder can change the

permissions on the files and folders she owns, regardless of any

other permission that might be in place.

Synchronize This allows or denies different threads to wait on the handle

for the file or folder and synchronize with another thread that

may signal it. This permission applies to only multi threaded,

multiprocessing programs.

Table 2.5. NFS special access permissions (cont.)

AFS and Coda

Both AFS and Coda provide the same security model. Since Coda is the continued

development of AFS it inherits the security model from AFS. The AFS security model

has been very successful in organization wide deployment. In this section the AFS model

is examined.

40

AFS uses access control lists with allow and deny bits. The mechanism is the

same as on Windows: All allow bits are joined through or, then all deny bits are joined

through or and subtracted from the allow bits. The remaining permission bits are the

actual permissions.

In AFS, the file owner and the admin may change permissions. There is no need

to take ownership of existing items. The disadvantage is that administrators may give

themselves read permissions, read a file, and then remove the permissions to cover their

trace. The advantage is that administrators have full access, which is needed for moving

files and for backup purposes.

AFS does not provide file-based security but only directory-based security. The

permissions in a directory are valid for all files in that directory. The rationale for this is

manageability. ACLs can lead to very complicated security permissions. Sometimes users

forget to set specific permission bits on their files. By reducing it to directory permissions

there are much less items to handle. Users must be aware of this though, as moving a file

from one directory to another directory will change its file permissions.

The security bits for directories provided by AFS are: lookup, insert, delete,

administer, read, write, and lock. Lookup allows viewing anything in this directory and

subdirectories. Insert allows creating new files. Delete is the permission for removing

or moving files. An administer bit provides access to change the security settings. Read,

write, and lock are file permissions that just apply to all files in this directory for reading,

writing, and locking against concurrent use.

AFS also provides eight special bits that can be user defined. These bits are

named A - H. There are no built-in provisions for these user bits other than retrieving and

setting them. They may be used to add additional meta data to the directories. One use

may be to emulate the archive, hidden, and system bits from the FAT file systems.

WebDAV with AC extensions

The WebDAV protocol as specified in the original RFC does not have any

support for modifying or querying permissions. It was up to the WebDAV provider to

enforce permission bits. There are standard provisions for authentication, however. There

is also a standard response for permission denied.

41

There is an extension to the WebDAV protocol to provide access control. This

extension was defined later than the original WebDAV protocol in [6]. There are

currently few implementations of these extensions.

These extensions provide for querying and setting of permission bits. Enforcing

these permissions is up to the server. This allows full backward compatibility to the

WebDAV protocol without the access control extensions.

A server implementing the AC extension must allow the grant primitive. It

may optionally allow a deny primitive. Whether allow or deny has a higher priority is

unspecified. There is an optional deny-before-grant option that may be set to specify this

behavior.

WebDAV AC does not specify any special rights for file owner or administrator.

It is up to the server whether to grant automatic permissions.

The permission bits for files in WebDAV AC are: read, write, write-properties,

write-content, unlock, read-acl, read-current-user-privilege-set, write-acl, and all.

Each server may implement some or all of these permissions. The read, write, and all

permissions are aggregate permissions. Having these permissions or being denied them

counts for all sub permissions. The unlock permission may allow someone that is not the

lock owner to break a file lock.

The WebDAV AC security bits for directories are: read, write, write-properties,

unlock, read-acl, read-current-user-privilege-set, write-acl, bind, unbind, and all. Write

is an aggregate permission for write-properties, bind, and unbind. Binding refers to the

creation of files. Unbinding refers to the deletion of files. The all permission aggregates

all permissions just as for files.

Security Table

The following two tables give an overview over the file and directory permission

bits present in the discussed operating systems and protocols.

42

Permission UNIX Windows AFS WebDAV +

AC

Read X X X

Read data X

Read attributes X

Read ext. attributes X

Write X X X

Write data X X

Append data X

Write attributes X X

Write ext. attributes X

Lock X

Unlock X

Execute file X X

SetGUID X

SetUID X

Delete X

Read permissions X X

Read own permissions X

Change permissions X X

Take ownership X

Synchronize X

Table 2.6. File privileges in different file systems

43

Permission UNIX Windows AFS WebDAV +

AC

Traverse X X

List X X X X

Read attributes X

Read ext. attributes X

Write attributes X X

Write ext. attributes X

Create / Delete sub items X

Create sub items X X

Create files X

Create folders X

Delete items X X X

Owner delete only X

Delete (this) X

Unlock X

Read permissions X X

Read own permissions X

Change permissions X X X

Take ownership X

Synchronize X

Table 2.7. Directory privileges in different file systems

44

Authentication mechanisms

Each one of these existing systems uses one of the following three authentication

mechanisms: client side authentication, server side authentication, or third party

authentication. Each one of these systems has advantages and disadvantages that will be

discussed here.

Client side authentication

By default NFS provides client side authentication only. When an NFS share is

mounted on a client host, it is the client hosts responsibility to ensure proper access. This

is very convenient in a multi user system: Multiple users may be logged on the same

client host, but still have different access rights on the server system. The problem is that

the client host has to be trustworthy. An illegitimate client can very easy ignore these

security measures and give its user full access. The standard NFS protocol is therefore

only safe in controlled environments.

Server side authentication

Most systems use server side authentication. Windows with server authentication

and WebDAV are two examples. In these systems a user has to authenticate himself with

a user name and password at the server where she wants to use the resources. The server

will then verify the password and grant or deny access. This is secure if the server is

secure and the connection is secure. In some implementations, the password is not send

directly, but used to facilitate a challenge response mechanism. In these cases the server

side authentication is safe. There are two problems with server side authentication: To

create a connection, a user has to provide a password. This is possible in most cases,

but it is impossible for an administrator to prepare connections for users. It also disables

multiple users on the same host from reusing the same connection without introducing

security holes. The second problem is that the password is transferred to the server. The

password may be intercepted on the way or on the server. Users also tend to store their

password on the client host to make it easier for them to access shared resources. These

client hosts are usually not as well protected as servers, making them an ideal source for

finding passwords.

45

Third party authentication

In a third party authentication mechanism the client authenticates with a third

party. This third party can then voucher for the user being the claimed user. Coda and

AFS use Kerberos as their trusted third party. Windows can use a Windows domain

server as a trusted third party. Trusted third party authentication claims to be the most

secure. The enable a user to log on once and then use different services. This minimizes

password use and therefore makes it easier to persuade users not to store their password.

Trusted third parties require a substantial investment in infrastructure. In most cases a

special server has to be set up and managed. This system scales only as well as the third

party scales.

Privacy mechanisms

In the discussed systems privacy is provided through the read permission. If

a user has the read permission, the files may be read. If a user does not have the read

permission bit, then access is denied. This works only as long as the systems are safe

and administrators are completely trustworthy. In the case of NFS this has to apply for

both the server and the client systems. In all other cases this has to apply to the server

system only. In all the systems a user with physical access to the host has the possibility

to access all data. In all of the discussed solutions a user with administrator rights has the

possibility to read all the data on the system. The Windows security model is the only one

of the discussed models where the user will even be able to find out that an administrator

has read a file.

46

CHAPTER 3. REQUIREMENT ANALYSIS

The requirements for the system need to be identified, before the actual system is

designed. It needs to be clear which requirements must be met. After all, there is no point

in developing a system that solves the wrong problem.

Most of the requirements have already been identified. The features that are

desirable in any file storage solution are described in the section called “File system core

features”. Architectural qualities for distributed systems in general are described in the

section called “Architectural qualities for distributed systems”. To identify the exact

requirements system usage patterns have to be investigated. Based on these user roles

have to be identified.

File Storage Scenarios

To identify the requirements different scenarios have to be looked at first. Who

would benefit from an advanced file system? Who would be using this file system and

why? Moreover, what are the things that are important to this particular user group? Of

course, in the real world, there will not be a scenario exactly as described here, but rather

a mixture. Nevertheless, theses examples will still help to find the actual uses.

Small work group

I will start with the small work group because this is very easy to describe.

Figure 3.1, “Small work group” shows an example. In most cases, there is one file server,

one Internet-gateway (sometimes the same host) and a small number of client host

(maybe five). Usually all client hosts are either personal computers or shared hosts. All

data transfer is done via shared folders on the server.

This system lacks privacy. In most cases, there is a shared folder on the server.

All users can read and store files there. There is nothing holding back one user from

deleting the file of another user.

There is also usually no or a tedious backup system. All work has to stop should

the server fail. In the case of an unrecoverable crash, all previous work could be lost.

47

Last, but not least, the client hosts are not used to their full potential. Most have

extra hard drive space and, depending on the type of work, extra clock cycles. Some hosts

are turned off at night, but others are just running idle, using electricity and providing

nothing for other users.

A typical small work group example. This work

group has one server and five clients (four PCs, one laptop)

Figure 3.1. Small work group

High-Performance Computing Lab

A high-performance computing lab is very similar to the small work group.

The clients here are not idle, the distribution of CPU cycles is already taken care of.

Nevertheless, many applications require a common data set. This is usually very large,

and therefore not on every host, but on one single server. Multiple hosts (25, 50, 100,

...) are trying to get parts of the dataset at the same time. If not carefully planned, this

performance leak can seriously reduce performance.

Large network

A large network is similar to the small network. However, suddenly there is more

than one server. Some of these might provide backup for other servers. A very important

feature here is that users want to be able to log into a different computer, maybe even in a

completely different location and still want to be able to access their files. Files should be

stored as close to the user as necessary, for performance, but should also be migratable to

other hosts. Maybe two people from different location have to share common files. They

should be able to share these files quickly.

48

Home user

The total opposite of the large network is the home user. The home user usually

has very few computers: Maybe one desktop and a laptop, maybe two PCs for multiple

people. Disk space is always low. Hosts usually have very different performance features,

I might be asked to move to the other computer because my brother wants to play a game.

In the case of the home user transparent file access to as much disk space as possible is

very important.

Concurrent Engineers

Distributed, concurrent-engineering teams would greatly benefit from this system.

They work at different physical locations, on different computer systems, with different

computer architectures. However, common data such as design documents, schedules,

engineering data, notes, etc. have to be shared. The support for versioning will allow

the team to go back to older versions, if necessary, but most importantly to ensure

that the current version is available to all team members instantly. Data will always be

downloaded from one of the hosts available. If a file is already available on a host in the

local network, this location will be preferred over a host at any remote location. This

enables faster updates and ensures that slower WAN links are less used.

Student Computer Lab

A computer lab is a large array of computers. All computers should behave

identically to the user, and offer the same file space. These lab systems usually use a

central file storage server, which is a single point of failure. However, each lab host has a

big hard drive nowadays, which is hardly used, if at all.

Astronomy

In a sky survey, the amount of data collected is very large. There must be some

way to spread data files over multiple computers, or to make whole or partial files

available to different users on different hosts. These files are usually associated with

metadata. The metadata has to be kept in some kind of database to allow fast retrieval of

the important data. [38, 69]

49

High-energy physics

When the Large Hadron Collider (LHC) study of subatomic particles and forces

at CERN will launch in 2007, it will be one of the greatest data management challenges.

More than a gigabyte of data will be generated every second. This data will have to be

distributed among researchers around the world. With these large amounts of data, it is

very important to prefer local replica to remote replica locations to minimize bandwidth

usage. [39]

Host types on the network

Based on these usage scenarios, hosts participating in the network can be

classified. Each host type has different properties.

Server

Server hosts are usually very reliable. They might have a RAID system,

have fail-over power supplies, multiple network interfaces, and other reliability

provisions. Server class computers are the easiest to use for administrators of distributed

storage systems. Only one system has to work, only one system has to be backed up.

Unfortunately, there also have to be client systems to make actual usage of the server.

Always up client

Administrators' favorite client hosts are the ones that are always up. These can

easily be maintained remotely. They can be also be used to provide additional server

features. However, not too many server features, since there is always a person wanting

to work on the host.

Work time up client

Work time up clients are usually on 40 hours a week. A person turns her personal

computer on whenever she enters the office, and turns it off whenever she leaves. Most

leave the host running during lunchtime, but even that is uncertain. Usually these are

personal hosts. The user is concerned about access speed to her personal files, and feels

the host slow down if other people access data on the same host.

50

Laptop

A laptop is the most complicated system to support when it comes to distributed

file systems. Usually laptops are moved around from one network to another, connecting

and disconnecting it from servers all the time. Fortunately, laptop users are used to this,

and therefore can be expected to specify which files they want to work on before they

disconnect. Nevertheless, as soon as the laptop is connected to the Internet the laptop user

wants to be able to access her files.

Mobile client

The last type of user is a special case of the laptop user, the so-called mobile

client. When talking about mobile, I mean small devices like personal digital assistants

(PDA) and cell phones. These devices usually connect temporary to the network with a

very low bandwidth. Users do not expect to have access to all data, but they do want to

have certain files available, usually calendar, address book, and notes.

Use Case Roles

Based on these usage scenarios different usage roles can be defined. These roles

are regular file system users, administrators, optimizer services, service provisioners, and

intergrid service providers.

51

File system users

Figure 3.2. Typical user cases for a file storage system

Figure 3.2, “Typical user cases for a file storage system” shows the use cases that

are identified for the regular user. These typical tasks can be executed on any existing file

system.

Administrators

Figure 3.3. Administrator use cases for a replicated file system

52

Figure 3.3, “Administrator use cases for a replicated file system” shows the

use cases for administrators. The administrator has the power to initiate all replication

manually. If needed, administrators should be able to delete files completely.

Optimizer services

Figure 3.4. Optimizer use cases for a replicated file system

To provide manageability the system should provide internal optimizer services.

Figure 3.4, “Optimizer use cases for a replicated file system” shows the use cases for

these optimizer services. They have to be able to manage file replication by creating and

deleting file replicas.

Service provisioners

Figure 3.5. Provisioner user cases for a replicated file system

53

The service provisioner is another type of optimizer service. As Figure 3.5,

“Provisioner user cases for a replicated file system” shows a provisioner has to be able to

start (provision) and stop services in the network. To make the decision, which services

to start or stop it needs to be able to query the current state of each service.

Intergrid service providers

Figure 3.6. Use cases for the intergrid meta computer

Another type of usage role is an intergrid service provider. These provide

computing services, providing a meta computer. Figure 3.6, “Use cases for the intergrid

meta computer” gives an overview of the use cases required for meta computing. A

service has to be able to find data files provided, download them, and upload them after it

is done processing.

Use Case Design

Now that it is clear which use case is triggered by which user role each use case

has to be described in more detail. A textual use case description has to be developed for

every use case.

54

Use Case 1 Browse Files

Goal in Context User wants to view files in the system.

Scope & Level User action.

Preconditions User has accessed Human Interface; User is logged in.

Success End

Condition

User sees files.

Failed End Condition A file listing is not available.

Primary, Secondary

Actors

User, SILENUS system.

Trigger Human Interface starts.

Description Step Action

 1 The system fetches a file list.

 2 The file system structure is displayed as a tree.

 3 The user expands directories.

 4 The file is found. User selectes the file.

Extensions Step Branching Action

 1a The file system is unavailable.

 4a The file is not available. The user has to find another way to

access the file.

Sub Variations Step Branching Action

 2 Instead of a tree the system may display a list of files and

directories in the root directory.

Table 3.1. Browse Files Use Case

55

Use Case 2 Find Files

Goal in Context User wants to find specific files in the system.

Scope & Level User action.

Preconditions User has accessed Human Interface; User is logged in.

Success End

Condition

User find the file.

Failed End Condition The file is not available.

Primary, Secondary

Actors

User, SILENUS system.

Trigger User calls Find Files action from menu.

Description Step Action

 1 The user enters search criteria

 2 The system finds files based on matches in the file metadata

 3 The list of files is displayed to the user

Extensions Step Branching Action

 3a The list of files is empty. The user may try again.

Sub Variations Step Branching Action

 1 Search criteria may be derived from the currently selected

file, e.g.: Find all files with the same name.

Table 3.2. Find Files Use Case

56

Use Case 3 Upload Files

Goal in Context User wants to store files in the system.

Scope & Level User action.

Preconditions User has accessed Human Interface; User is logged in.

Success End

Condition

The file is stored in the system.

Failed End Condition The file if not available in the system.

Primary, Secondary

Actors

User, SILENUS system.

Trigger User calls Upload Files action from menu.

Description Step Action

 1 The user selectes a directory as decribed in "Browse Files".

 2 The user chooses upload.

 3 The system displays a tree of the local files and directories.

 4 The user selects a local file or directory for upload.

 5 The selected files and directories are stored in SILENUS.

 6 The system now displays an updated list of files and

directories.

Extensions Step Branching Action

 5a No Byte Store service is available. The upload fails.

 5b There is not enough space available. The upload fails.

Sub Variations Step Branching Action

 5 If the user agent is can start an active server process, it may

passively upload the files (pull file upload). If the user agent

is restricted, it has to upload the files through a push upload.

Table 3.3. Upload Files Use Case

57

Use Case 4 Download Files

Goal in Context User wants to retrieve files from the system.

Scope & Level User action.

Preconditions User has accessed Human Interface; User is logged in.

Success End

Condition

The file is retrieved to the local file system.

Failed End Condition The file is not available on the local system.

Primary, Secondary

Actors

User, SILENUS system.

Trigger User calls Download Files action from menu.

Description Step Action

 1 The user selectes a file as described in "Browse Files".

 2 The user selects download.

 3 The system displays the local file system tree. The user

selects a directory.

 4 The selected files are downloaded to the local file system.

Extensions Step Branching Action

 4a The files may not be available. The user has to try again.

 4b There may be insufficent space on the local file storage to

download the file.

Table 3.4. Download Files Use Case

58

Use Case 5 Modify File Metadata

Goal in Context User wants to change files in the system.

Scope & Level User action.

Preconditions User has accessed Human Interface; User is logged in.

Success End

Condition

The file metadata is updated.

Failed End Condition The file metadata is unchanged.

Primary, Secondary

Actors

User, SILENUS system.

Trigger User selected action.

Description Step Action

 1 The user selectes a file as described in "Browse Files".

 2 The file metadata is displayed in a table.

 3 The user may change the metadata.

 4 The metadata is updated on the metadata stores.

Extensions Step Branching Action

 3a Some metadata may be read-only.

Sub Variations Step Branching Action

 3 Deleting a file is also changing its metadata.

 3 Renaming a file is a change in metadata.

 3 Moving a file is a change in metadata.

Table 3.5. Modify File Metadata

59

Use Case 6 Replicate Files

Goal in Context Make a file available on multiple byte stores.

Scope & Level Administrator action. Optimizer action.

Preconditions A file is uploaded and available at at least one byte store.

Success End

Condition

The file is available at another byte store.

Failed End Condition The file could not be replicated.

Primary, Secondary

Actors

Administrator, Optimizer, SILENUS system, byte store service.

Trigger A file is uploaded; or a files availability has dropped below a

given level.

Description Step Action

 1 The system identifies the byte stores that the file is stored

on.

 2 The system identifies a target bytestore.

 3 It triggered copying between both byte stores.

 4 The metadata is updated to reflect the new situation.

Extensions Step Branching Action

 1a No byte store may available. The file is unavailable and

cannot be replicated.

 2a No other byte stores may be available. The file cannot be

copied.

 3a The copying may fail. In this case another target byte store

has to be selected.

 4a The metadata may have changed in between. It must be

ensured that there is no conflict.

Table 3.6. Replicate Files Use Case

60

Use Case 7 Delete File Replica

Goal in Context A file replica is removed from a byte store.

Scope & Level Administrator action. Optimizer action.

Preconditions A file is uploaded and available at multiple byte stores.

Success End

Condition

The file is deleted from a byte store.

Failed End Condition A file could not be deleted.

Primary, Secondary

Actors

Administrator, Optimizer, SILENUS system, byte store service.

Trigger A file exceeds its useful availability level.

Description Step Action

 1 The system identifies the byte stores that the file is stored

on.

 2 The system identifies a byte store to delete from.

 3 The metadata is updated to remove the byte store.

 4 The byte store is asked to delete the file.

Extensions Step Branching Action

 1a No byte store may available. The file is unavailable and

cannot be deleted.

 3a The metadata may have changed in between. It must be

ensured that there is no conflict.

 4a The byte store may have become unavailable. In this case

the delete request must be retried at a later time.

Table 3.7. Delete File Replica Use Case

61

Use Case 8 Erase File Permantly

Goal in Context A file is completely deleted from the file system.

Scope & Level Administrator action.

Preconditions Administrator has accessed Human Interface; Administrator is

logged in.

Success End

Condition

The file is unavailable.

Failed End Condition The file is still available.

Primary, Secondary

Actors

Administrator, SILENUS system, byte store services.

Trigger Administrator triggered action.

Description Step Action

 1 The administrator selects a file as shown in "Browse Files".

 2 The adminstrator chooses to delete a file permanently.

 3 The system retrieves a list of all byte stores containing the

file.

 4 It updated the metadata to reflect the deletion.

 5 All byte stores are asked to delete the file.

Extensions Step Branching Action

 5a Not all byte stores are available. In this case the delete

request must be retried at a later time.

Table 3.8. Erase File Permanently Use Case

62

Use Case 9 Get Service State

Goal in Context A service provides information about its current state.

Scope & Level System information.

Preconditions A service is identified.

Success End

Condition

Service quality information is available.

Failed End Condition Service quality information is not available.

Primary, Secondary

Actors

SILENUS system; Optimizer service.

Trigger Automatically

Description Step Action

 1 The system fetches a list of all services.

 2 The services provide information on their current state.

Table 3.9. Get Service State Use Case

63

Use Case 10 Provision Service

Goal in Context Make another service availale.

Scope & Level Provisioner action.

Preconditions Service states are collected.

Success End

Condition

A service is started on another host.

Failed End Condition The service could not be started.

Primary, Secondary

Actors

SILENUS system; Optimizer service.

Trigger Service state shows that a service is overloaded.

Description Step Action

 1 The provisioner fetches the service state from all services.

 2 It checks if any service is overloaded.

 3 A new host to run a service is identified.

 4 The service is deployed at the target host.

 5 The service is started on the new host.

Extensions Step Branching Action

 2a No services are overloaded. No new services need to be

provisioned.

 3a No hosts may be available. Try back at a later time.

 4a Deployment may fail. Go back to step 3.

 5a Starting the service may fail. Undeploy the service and go

back to step 3.

Table 3.10. Provision Service Use Case

64

Use Case 11 Stop Service.

Goal in Context A running service is terminated.

Scope & Level Provisioner action.

Preconditions Service states are collected.

Success End

Condition

The service is stopped.

Failed End Condition The service is still running.

Primary, Secondary

Actors

SILENUS system; Optimizer service.

Trigger A service is underused.

Description Step Action

 1 The provisioner fetches the service state from all services.

 2 The checks if a service is underused.

 3 A service that can be terminated is identified.

 4 It is ensured that all the data available on this service is still

available on other services.

 5 The service is terminated.

Extensions Step Branching Action

 2a The services may all be in use.

 4a Some data may not be replicated on other services. In this

case the service cannot be terminated.

Sub Variations Step Branching Action

 4 For byte stores it must be ensured that all files stored on

this byte store are also available on other byte stores. For

metadata stores it must be ensured that this service is

synchronized with the other metadata stores.

Table 3.11. Stop Service Use Case

65

CHAPTER 4. ARCHITECTURE AND DESIGN

In this chapter a new model for a distributed file storage solution is introduced.

This model is specified in terms of its system architecture, interfaces, and interaction

among its components.

To specify a system, its architecture has to be defined first. The architecture is

necessary to understanding and manage system complexity. Once the architecture is

specified individual components can be designed.

Figure 4.1. Class Model vs. Architecture and Design

A service-oriented approach is chosen to satisfy the given requirements. The

system will be broken up into smaller components, which will be implemented as

services. Each service has a specific responsibility. Since all services are dynamic

in nature, there is no specific deployment to any particular host. Each host can host

none, one, some or all of the services. These services will use the SORCER network to

communicate with each other. [40]

66

Figure 4.2. Silenus components communicating over the SORCER network

A model for a grid based environment

In a grid-based environment there is no clear notion of a client and a server

computer. Every node in the grid is a client and a server at the same time. It is a

server, since it offers services to other computers. It can offer computing services

and data services. It is a client, since it requires services from other nodes. It requires

computational results from other nodes through shared data.

A different architectural model, such as a peer-to-peer or a service-to-service is

required. In a classical client-server application a large load is put on one server host. If

multiple grid clients try to access the same server host at the same time, the server will be

overloaded. In a peer-to-peer architecture, every host is a client and a server at the same

67

time. The load is now balanced between all hosts. This is a preferable model if all hosts

are equal. The service-to-service architecture splits up the functionality of the system

into smaller services. Each host may now run zero, one, or multiple service providers. A

service requestor can use any service provided by any host in the network. This supports

different host configurations: A set of hosts may run data service providers, another set of

host may run computational service providers, and some hosts may run both.

I therefore propose the following changes to Coulouris model to be used as a grid

model: Flat file service and directory services will become independent service providers.

The client module will be stripped of all duplicated functionality.

Having the flat file service and the directory service as independent service on

the network provides scalability. A service requester may choose any directory and flat

file service that is available. Traversing directories does not use the flat file service, thus

saving resources.

The client module will be stripped from its duplicated functionality. If local

caching is desired, a flat file and directory service can be run on the local host.

Figure 4.3. Grid model for data storage

SILENUS architectural model

The new SILENUS architectural model extends the traditional file storage model.

SILENUS distinguishes between client modules, a directory service, and a flat file

service. It introduces extra management services for coordination and for optimization.

68

Figure 4.4. The SILENUS Components

The Human Interface, WebDAV Adapter, NFS Adapter and JXTA Adapter are

client modules. Each one of them serves a particular type of client. The ones given here

are just examples, adapters could be written for any other existing file storage solution.

The human interface (ServiceUI) provides support for file storage and management

through a proprietary user interface. It provides access to the extra features, which are

not available through the other interfaces: Advanced features such as manual migration,

number of replicas, log-file viewing, and others. The service interface should only

be needed for these extra features and can be ignored by most users. The WebDAV

Adapter provides support for operating systems that have support for WebDAV, such

as Windows, Mac OS X, and newer UNIX systems. It provides support for existing

applications. This gives current operating systems the possibility to use the file storage

without having to install a client. The NFS adapter provides support for older UNIX

systems. A JXTA adapter provides support for the JXTA content management interface.

These adapters are just examples of mapping from SILENUS to existing systems, other

adapters may exist as well. Unlike the Coulouris Model, these adapters do not have to

provide support for advances features, such as caching, which makes them smaller and

easier to adapt to other interfaces.

69

The SILENUS Facade and Transaction Manager introduce a new coordination

service. To make the client modules even smaller, the coordination between the client

modules and the providing services is sourced out to the SILENUS Facade. It provides

a gateway to the SILENUS file storage. This component provides a facade to the

underlying services. It takes care of transactional semantics between file and meta

information storage. It provides one easy interface for the user. The facade provides

support for forwarding requests to the appropriate services. It uses the Transaction

Manager for ensuring consistency. The Transaction Manager is a JINI standard

component for handling transactions in a distributed environment.

The Byte Store maps to the flat file store of the Coulouris model. It provides

functionality for creating and retrieving file data. The Byte Store does not provide file

attribute storage, which is different from the Coulouris model. It does, however, provide

support for retrieving attributes that are derived from the file data. Such attributes include

file size and checksums. These can be used to verify the file contents. The Byte Store

provides fast access to the files stored on the provider's host. Files are usually stored

encrypted, but can be unencrypted for performance reasons

The Metadata Store maps to the directory service in the Coulouris model.

It provides functionality to create, list, and traverse directories. It also provides

functionality to retrieve the file data location. Unlike the directory service, the Metadata

Store is also responsible for file metadata. File metadata is all the information that is

either included in the actual file data or that can be derived from the file data, such as file

name, creation date, file type, type of encryption, and others. As a matter of fact, the file

storage location, the file name, and even the directory a file is in are nothing different

than just three file attributes. This allows all these attributes to be handled in a standard

way. Multiple versions of one file may exist in the database for recovery purpose.

The Byte Replicator and other optimizer services provide a component that is

not yet present in Coulouris model. They provide support for autonomic computing. In a

classical data storage solution, an administrator has to manually move and distribute files

among different servers. In SILENUS, this is done by optimizer services. These services

will analyze the current network condition and make decisions on where to store files,

where to keep replicas, and even when to startup and shutdown services. Each optimizer

service is a separate component, allowing an administrator to chose exactly which kinds

70

and how many optimizer services to run on the network. One example of these services

is the ByteReplicator service. It will make sure that uploaded files are replicated among

different byte store nodes to provide redundancy. Optimizer services can request log

information from the storage providers, and can automatically initiate replication and

migration. It can detect usage patterns and make sure that the files are available to the

user. It can alsodetect non-responding systems and automatically replicates all files that

were stored on it. The Replicator also ensures that all storage servers have the latest

version of the files.

After this overview over the services and their interactions, the individual services

can now be looked at in more detail.

Components

Service user interface

Figure 4.5. Component diagram for the user interface

To work with the file system, users need an interface. None of the compatibility

interfaces can provide access to all of SILENUS capabilities. Therefore and additional

user interface is provided.

The user interface is dynamically downloaded when needed. Unlike traditional

systems that require installation on a client computer, SILENUS user interface is

dynamic. The user needs to have a service browser installed. This service browser can

detect services running in the network. It can then download and display these provided

user interfaces. There is no actual configuration needed on the client computer.

71

WebDAV adapter

Figure 4.6. Component diagram for the WebDAV adapter

The WebDAV adapter provides the connection from existing applications and

file systems to the SILENUS file storage system, as shown in Figure 4.7, “The WebDAV

adapter”.

OpenBSD
Open BSD

Figure 4.7. The WebDAV adapter

The WebDAV adapter uses Java Servlet technology to handle requests instead of

rewriting complete new server software. WebDAV is based on HTTP, as explained in the

section called “WebDAV”. Therefore, existing application servers that handle HTTP can

be reused to provide a WebDAV server. One of these technologies is Java Servlets, as

explained in the section called “Web-based access to file storage”. The Servlet standard

provides functionality for handling HTTP requests with the HttpServlet interface. It is

very easy to add the additional functionality required for WebDAV.

72

Incoming WebDAV requests will have to be mapped to the appropriate file

store requests. Most requests are straightforward: GET and PUT will be implemented

using the upload and download functions. PROPFIND uses the request node info, and

PROPPATCH will set node info. LOCK requests can be ignored, but need to be handled

internally to provide consistency.

The implementation and details of the WebDAV adapter is a pending master

thesis topic for Fajin Wang.

NFS adapter

The NFS adapter provides a mapping from the NFS file system protocol to the

SILENUS file storage. The NFS file system protocol is most widely available on UNIX

client hosts. Although many newer UNIX systems provide support for WebDAV, not

every older system has support for it. These systems, however, can access the NFS

protocol. Providing support for NFS and WebDAV allows a broad number of clients to

connect.

The NFS protocol is based on remote procedure calls (RPC). In an RPC the client

sends a UDP packet to the server. This packet contains a program number, a procedure

number, and data. The server will dispatch the appropriate program and procedure, and

return a reply packet. The NFS protocol is specified in [1] and [2].

The functionality of the NFS protocol includes file system statistics, directory

handling, attribute handling, and file read and write operations. The file system statistic

functions provide a count of used and available block. The directory handling allows

listing, creating, and deleting directories. File attributes can be read and set in with the

common UNIX permissions. File read and write allows reading and writing of data

blocks.

The mapping of most functions to the SILENUS system is straightforward.

Directory handling and attribute handling can be directly mapped to reading and setting

information in the metadata store.

NFS handles use 256 bits while SILENUS UUIDs have a variable bit length.

They must therefore be mapped into the handle range of NFS. A special mapping table

keeps a relation between NFS handle ids and SILENUS UUIDs. The mapping itself

73

is volatile. Should the mapping information be lost a "stale NFS handle" error will

be created. NFS clients can recover from this error by rebrowsing the list of files and

directories.

The file system statistics as such do not exist in the SILENUS system. NFS has

support for used, available, and free blocks. At the moment these are faked using dummy

values. A new service could be added that collects these statistics and provides a better

estimate.

Mapping the read and write functions is more complex. NFS supports

functionality for randomly reading and writing blocks. This is due to the fact that NFS

calls are supposed to be stateless and idempotent: If the result or request for a read or

write operation is lost this operation may just be sent again. SILENUS, however, supports

file reading and writing through byte channels. The NFS adapter therefore has to keep the

state of the clients current read or write function. Fortunately, most file reads and writes

are not in random order but sequential. The NFS adapter keeps lists of open channels for

the last read and write operations. If the same file is read or written again, the old byte

sequence accessor is used to continue reading or writing the data. If no operation occurs

in a given time, the channel is closed.

File store

Figure 4.8. Component diagram for the SILENUS facade

The SORCER File Store interface provides a facade to the SILENUS network for

clients that want to use the system. Since the metadata and actual file contents are stored

in different services, there is need to coordinate between these two services. To make use

of the file system easier this functionality is combined in the SILENUS facade with the

File Store interface.

74

Most of the file store functionality is very straightforward and just consists of

forwarding a request to the appropriate service. Actions like retrieving file metadata or

setting file metadata can be directly forwarded to a metadata store. In this case, the extra

step of going through the facade can be skipped: These functions are implemented as a

smart proxy that will be downloaded to the client. The smart proxy can talk directly to the

metadata store, thus reducing overhead.

File download has to be coordinated between two services: The file metadata has

to be retrieved from the metadata store. This metadata contains information about the

byte store that carries the file contents. A connection has to be made with that particular

byte store.

File upload requires the use of transactional semantics. When a file is to be

uploaded, two things have to be created: A new node in a metadata store, and the file data

has to be uploaded to a byte store. To save time both requests can be started in parallel.

However, it is very important that, should one of them fail, the other one be cancelled.

Figure 4.9, “File upload transactional semantics” shows this transactional semantics.

75

File Upload Request

Send Metadata
to MetadataStore

Create ByteSequence
in ByteStore

create Transaction

Upload File
to ByteStore

commit

[success]

abort

[failure]

commit

[success]

abort

[failure]

make Metadata
permanent

[both commit]

make File permanent

[at least one failed]

undo Metadata delete file

Figure 4.9. File upload transactional semantics

To support the transactions a separate transaction service is needed. Fortunately,

Jini already provides a standard for the Transaction Manager interface. It also provides

a reference implementation, called Mahalo, which implements this interface. The

SILENUS facade can use either this or any other service that provides transactions to

ensure that both operations succeed.

76

Metadata store

Figure 4.10. Component diagram for the metadata store

The metadata store provides attributes for the files stored in the file system. The

analogy in a traditional storage system is the file system. The metadata information

creates the well-known hierarchical structure. Files in the Metadata store are identified by

UUIDs. The metadata provides mapping from and to file names.

The file metadata is stored in key-value pairs for each file. The key describes the

kind of attribute (e.g. file name, creation date), where as the value describes the value of

the attribute.

There are two types of file attributes. Basic attributes are of type string or are

easily represented in string form. Extended attributes can be any Java object. This

distinction is necessary when retrieving file attributes. Instead of having to choose a list

of attributes, a client can choose to get either just the basic attributes or all attributes. This

makes look-ups for basic attributes fast, but does not limit the attribute types.

The two attributes parent and mime type are used to create the well-known

hierarchical file system structure. Every node except for the root directory has exactly

one parent node. The mime type describes the type of the file. A special mime type is

used for directories and links.

Metadata stores are synchronized while connected. All metadata stores contain

the same information. Should a metadata store be disconnected while its information

changes, it will be resynchronized when it is connected back to the other metadata stores.

The metadata store meta information is needed for metadata store

synchronization. The metadata store needs to keep track of which file versions it has and

when the last synchronization has occurred.

77

As in internal database, an embedded database is chosen. Using an embedded

database makes installation much easier; it does not require the installation of external

database software. The database access itself is done using the data access object pattern

to extensibility and support for other databases if needed. A high-performance computing

lab, for example, could set up commercial database software to increase performance.

Byte store

Figure 4.11. Component diagram for the byte store

The byte store service stores the actual file data. In the analogy of hardware, this

would be the actual hard drive.

The ID of the byte store and an entry ID in the byte store identify files in a byte

store uniquely. These ID numbers never change. This makes the file storage independent

from file metadata such as the file name. The byte store services provide nothing but

support for file storage. The advantage is that this service can be then optimized for

performance. Adam Turner is currently working on his master thesis investigating

potential performance optimization using a BitTorrent like file distribution.

Unlike the metadata stores, the byte stores are not synchronized. File data is much

larger than file metadata. Would the file data be replicated on every node the storage

capacity would be filled very quickly. It is the job of the optimizer services to provide file

data replication.

78

Optimizer

Figure 4.12. Component diagram for the optimizer

The optimizer services keep the network in good shape. There can be many

different optimizer services. Each service could provide different optimizations.

One example service is the ByteReplicator optimizer service. This service is

triggered when a new file or a new version of a file is uploaded to the file system. It will

then look for another byte store that has enough storage space. It tells the other byte store

to replicate the file. After the file is replicated, it will update the metadata stores to have

the new location information. This ensures reliability by providing multiple copies. Not

only new files can trigger replication. If a byte store service becomes unavailable, all files

that where stored on that services are potential candidates for replication: They may now

exist in the network only once, not providing reliability. In this case, the ByteReplicator

has to trigger another replication.

Another type of optimizer services is an autonomic provisioner. When the file

system becomes full, the provisioner may start more byte store services. When the file

system is sparsely used, these byte store services may be shut down. When the metadata

stores and the SILENUS facade get to many requests, the provisioner may start provision

new services in the network. When the number of requests goes down, the provisioner

may stop these services.

Component Use Cases

Based on the SILENUS architectural model we will examine three typical use

cases in file storage systems. These cases are browsing for files, uploading a file, and

downloading a file. For file upload there are two different use cases, one for push and

one for pull operation. For downloading we will look at the caching and non-caching use

cases.

79

<< component >>

Silenus
<< component >>

ServiceUI

UI

<< component >>

Daphne

WebDAV

<< component >>

JXTA Adapter

CMS

SorcerFileStore

<< component >>

Mahalo

<< read-only >>

TransactionManager

<< component >>

Midas

SorcerMetadataStore

<< component >>

Byzantium

SorcerByteStore

<< component >>

ByteReplicator

SorcerOptimizer

Figure 4.13. SILENUS architectural model overview

There is also a direct connection between the client adapters and the byte store

that is not shown in the overview. This connection is used for the actual file data upload

and download. There are two different cases: One for passive clients, and one for an

active client that has its own service process.

In the case of a passive client adapter, the byte store offers it services to the client.

All connections have to be initiated from the client. Files have to be uploaded with the

push method.

ReadableByteChannel

WritableByteChannel

<< component >>

Byzantium
<< component >>

Daphne

Figure 4.14. Direct connection with a passive client

In the case of an active client adapter a connection can be initiated from the byte

store service. This method requires the client to run its own service process. If this is

not possible, it can fail back to the passive method. An active client could be the user

interface or another byte store.

80

<< component >>

ServiceUI
ReadableByteChannel

ReadableByteChannel

<< component >>

Byzantium

Figure 4.15. Direct connection with an active client

Given this model the use cases can now be described.

Browse files use case

The browse files use case is very straightforward. The request for browsing is

forwarded to the facade, which will then forward it to a metadata store. The metadata

store will return the attributes for a given nodes. The list of children is one of the

attributes.

:MetadataStore:Silenus:ServiceUI

4 : attributes

3 : expandNode:User

5 : attributes

2 : expandNode

6 : directory listing

1 : list directory

Figure 4.16. Browse Files

Push upload file use case

To facilitate the file upload, the file data has to be split up into file content and

file metadata. It is the SILENUS facade's responsibility to coordinate this split up and to

ensure that both actions succeed. The byte store returns a writable byte sequence. This

byte sequence is passed back to the client, which can then use this sequence to upload the

file.

81

:MetadataStore :TransactionManager

:ByteStore

:Silenus

:ServiceUI
1 : uploadFile

10b : commit

7b : prepare

8a : uploadFileData
:User

5 : createNode

4 : createByteSequence

6 : commit

3 : createTransaction

7a : ByteSequenceAccessor

2 : uploadFile

10a : commit

9a : prepared7c : prepare

Figure 4.17. File upload with push

Pull upload file use case

The pull file upload is identical to the push file, but here the byte store is the

active component pulling its data from the client. To allow a pull file upload the client

module has to run its own service component. The byte store can then pull the byte data

from the client. This moves the management of the actual file transfer to the byte store.

As with the push file upload, the transaction manager is used to ensure that this operation

completes successfully.

:TransactionManager:MetadataStore

:Silenus

:ByteStore:ServiceUI

5b : createNode
6b : commit

3 : createTransaction

1 : uploadFile
:User

9a : commit

8a : prepared7c : prepare

5a : downloadFileData

2 : uploadFile

4 : createByteSequence

9b : commit

7b : prepare

Figure 4.18. File upload with pull

82

Non-caching download file use case

To download a file, the SILENUS facade first asks a metadata store for the files

metadata, which includes its location. The facade can then decide on a byte store. It

will ask the byte store to return a byte sequence. A byte sequence is a smart proxy that

contains the information on how to talk back to the byte store. It will return this byte

sequence to the client module. The client module can then use this byte sequence to

download the actual file contents.

:ByteStore

:MetadataStore:Silenus:ServiceUI:User
1 : download

7 : bytesequence

2 : download

4 : metainfo

3 : expandNode

8 : download

6 : bytesequence

5 : getBytesequence

Figure 4.19. Downloading a file

Caching download file use case

To facilitate caching the SILENUS facade needs to know which byte store is

considered "local" to the client host. This is usually a byte store on the same host, but

may also just be a byte store in the local network. There may even be multiple local byte

stores. If a file is available at a local location, this location is used and the interaction is

the same as in the non-caching case. If the file is not available locally, the facade initiates

a transfer between the remote byte store and the local byte store. It will return the handle

to the local byte store to the client module. The client module can then download the

content from the local byte store at the same time the local byte store downloads the

content from the remote byte store.

:ByteStore:ByteStore

:MetadataStore:Silenus:ServiceUI:User
1 : download

9b : bytesequence

2 : download

4 : metainfo

3 : download

10b : download

9a : download

6 : bytesequence

5 : getBytesequene

8 : bytesequence

7 : downloadFrom

Figure 4.20. Downloading a file with caching

83

Use cases for Service-oriented programs

Service oriented programs can use the SILENSU file storage in a similar way the

GUI and WebDAV client modules use the SILENUS file storage. When uploading or

downloading a file, they will connect to the SILENUS facade to retrieve and store their

data.

See diagrams
for download
and upload

:ExertionSpace

See diagrams
for upload
and download

:Worker

:JobberUI :Jobber

:Silenus:ServiceUI:User

12 : downloadFile

1 : uploadFile

13 : downloadFile

2 : uploadFile

4 : submit Job

3 : create and submit Job

6 : pickup Task5 : add Tasks

11 : uploadFile

7 : downloadFile

10 : postprocess

9 : execute Task

8 : preprocess

Created with Poseidon for UML Community Edition. Not for Commercial Use.

Figure 4.21. Use case for SO Task using file store

The retrieval and storage of file data is the exact same mechanism as from the

other client modules. The interaction is the same, just with the ServiceUI replaced by the

worker Task.

:ByteStore

:MetadataStore:Silenus:Worker

6 : bytesequence

1 : download

3 : metainfo

2 : expandNode

7 : download

5 : bytesequence

4 : getBytesequence

Figure 4.22. Worker service download case

84

:MetadataStore :TransactionManager

:ByteStore

:Silenus

:ServiceUI

9b : commit

6b : prepare

7a : uploadFileData

4 : createNode

3 : createByteSequence

5 : commit

2 : createTransaction

6a : ByteSequenceAccessor

1 : uploadFile

9a : commit

8a : prepared6c : prepare

Figure 4.23. Worker service file upload case

If the processing for the job is done in multiple tasks, then each task has to upload

and retrieve the file from the file storage system

:Worker

:Worker

:Worker

:ExertionSpace:Jobber:JobberUI

:Silenus:ServiceUI:User

18 : download File

1 : uploadFile

19 : download File

2 : uploadFile

3 : create and submit job

4 : submit job 5 : add Tasks

9 : upload file7 : download File

11 : download File

13 : upload File

15 : download file 17 : upload File

6 : pickup Task

10 : pickup Task

14 : pickup Task

8 : preprocess

12 : execute

16 : postprocess

Figure 4.24. Use case for several tasks using SO file store

The Service context for the tasks will contain a link to the files used for the task.

It will contain a link for the input file and a link for the output file for each task. These

links are stored as SILENUS URIs.

85

1. The user uploads a file into SILENUS at /somePath/someData

2. The job is created. In its context the key "InputData" is set to

"sorcer://FileStore/somePath/someData"

3. The preprocessor reads the field, downloads the data, and creates a new file

"someData.preprocessed". In the context it sets the key "PreprocessedData" to

"sorcer://FileStore/somePath/someData.preprocessed"

4. The worker service reads the field, downloads the preprocessed data, and

creates a new file "someData.processed". It sets the key "ProcessedData" to

"sorcer://FileStore/somePath/someData.processed".

5. The post process task reads the field, downloads the processed data. It then

creates a new file "someData.postprocesssed". It sets the key "OutputData" to

"sorcer://FileStore/somePath/someData.postprocessed".

Example 4.1. Sample usage of SILENUS URIs

Instead of passing SORCER URIs with filenames between the internal

services, the services may pass the file store UUIDs between the services, thus

saving the next service the lookup process. They would then use URIs like

"sorcer://FileStore?uuid=1234-5678-90AB-CDEF". This can be done between

the preprocessor task and the process task, and between the process task and the

postprocessor task. It cannot be done for the input file name and the output file name

where the result is returned to a human user, who will most likely prefer a readable URI.

File system attributes

We will look at several file system attributes and describe how the SILENUS

model handles them. For each of these attributes advantages and disadvantages are

identified.

Transparency

The ISO defines seven levels of transparencies in distributed applications. Each

transparency is analyzed and looked at in the context of SILENUS.

The first transparency is location transparency: It should not matter where a file is

actually stored, it should always be accessible. In SILENUS, a file is accessible as long

as at least one byte store that has the file data and one metadata store are available. The

86

client module will provide access to the file just like local files, thus providing location

transparency. The drawback of providing location transparency is slower file access.

Finding the location of a file requires extra overhead. Retrieving the file content from a

remote host is always slower than retrieving it from the local host. If the file content is

stored at a remote location, there may a low bandwidth between the local host and the

host storing the file data. Local caching can lessen this disadvantage.

The second transparency is access transparency. Files should be accessible

through existing software. This transparency is provided through the client modules.

Each client module adapts the file system to an existing environment. These adapters

require extra overhead.

Replication transparency requires that it should not matter on which file replica a

user works. This is provided by SILENUS update mechanism, which is explained in the

section called “File Replication”.

Failure transparency states that the system should still work in the expected way

in case of a failure. Failure transparency in SILENUS is acquired by file replication and

by expecting disconnection. Both solutions lead to more overheads in the system. File

replication requires more storage space. Expecting disconnection may lead to temporary

inconsistencies.

Reading the same file from multiple nodes is called read concurrency

transparency. SILENUS provides this through replication and non-exclusiveness of file

reading. Multiple requestors may read the same file at the same time. This may create a

bottleneck if a file is available on only one host. This is avoided through local caching,

which makes a downloaded file immediately available to other hosts.

Write concurrency transparency in SILENUS is provided through its unique

versioning mechanism. It is explained in the section called “Concurrent File Updates”.

Migration transparency requires that the actual file data can be moved from one

to anther host without interrupting work. SILENUS provides standard mechanisms for

adding and removing file replicas. The disadvantage is that clients may not immediately

know about the adding or removal of a replica, thus either not taking advantage of a

local copy, or trying to access a replica that is no longer available. In this case the failure

handing mechanisms of SILENUS have to catch it.

87

Concurrent File Updates

SILENUS supports concurrent file updates through its versioning mechanism. If

a file is updated, a new version of that file is created. The old version is not touched. If

two clients try to update the same file at the same time a conflict occurs. Conflicts are

solved through virtual duplication. This is explained in more detail in the section called

“Conflict resolution through virtual duplication”.

File Replication

File replication in SILENUS is supported through the use of multiple byte store

services. Whenever a file is requested it may be cached in a local byte store. Replicas of a

file may be available in as many locations as needed. To automatically manage these file

replicas two optimizer services are used.

The first one of these optimizer services is the Byte Replicator service. It ensures

that at least two copies of a file are in the network at the same time. This service is

triggered when a new file or a new version of a file is uploaded to the file system. It will

then look for another byte store that has enough storage space. It tells the other byte store

to replicate the file. After the file is replicated, it will update the metadata stores to have

the new location information. This ensures reliability by providing multiple copies. Not

only new files can trigger replication. If a byte store service becomes unavailable, all files

that where stored on that services are potential candidates for replication: They may now

exist in the network only once, not providing reliability. In this case, the Byte Replicator

has to trigger another replication. If there are not enough byte stores available, one may

be auto provisioned as explained in the section called “Optimizer”.

The second optimizer service, which is not shown in the architectural overview, is

a replica deletion service. It will check the number of replicas of a file from time to time.

If a file has a high number of replicas, it will free space by deleting some of the replicas.

This ensures that more space is available if needed. It can use access data provided by the

byte stores to decide which replicas to delete.

Providing multiple file replicas is mandatory for performance and reliability.

Files that are replicated to the local host can be accessed much faster than files on remote

hosts. To provide reliability a file has to exist in the network multiple times. It can then

be downloaded from alternate sources, should one of the providers become unavailable.

88

On the downside it uses more storage space. Requiring that every file exists in the

network twice uses up twice as much storage space. This requirement may have to be

relaxed for large files on reliable hosts.

Operating system heterogeneity

To look at operating system heterogeneity two aspects have to be looked at: The

potential heterogeneity for client systems and for the hosts running the services.

The use of small client adapters makes the file storage independent from the

actual operating system and architecture used on the client. If the client system supports

a standard protocol, such as WebDAV or NFS, it can be used. The use of small client

adapters makes it easy to add another one should a new client system be developed.

The services may also run on various different host types. Supporting each of

them with a custom solution is a major undertaking. A feasable solution is using a virtual

machine. An application would have to be written for that virtual machine. Only the

virtual machine has to be ported to different platforms. The programs are compiled into

intermediate byte code language. This byte code can be reused on any of these virtual

machines. This makes code mobility possible.

Using a virtual machine always has a performance impact. Running a virtual

machine takes up processor time. Several solutions exist to prevent the performance

impact, such as the Hotspot compiler in the Java Virtual Machine. Code that is

repeatedly used is adaptively compiled to native machine code. This allows for improved

performance. Recent evidence even suggests that the runtime optimization is better than

the compile time optimization and Java program run faster than equivalent machine

native programs [68].

Fault tolerance

In the SILENUS system, fault tolerance is provided by local replication and

dynamic discovery. Each metadata store keeps a full copy of the file metadata. Should

a system become disconnected, this local copy will be used. Each byte store on a local

host caches the most recently accessed files as described in the section called “Caching

download file use case”. These files will be used in the case of disconnection.

89

Services will be dynamically discovered whenever they are needed. In traditional

file storage solutions addresses of servers are manually configured. If a server is

unavailable, the request will fail. The dynamic nature of service-to-service makes this

unnecessary. As long as there is at least one service of this type available in the network,

this service can be discovered and used.

The dynamic discovery also provides for failover. Should a service not respond to

a request in a certain time, the request can be sent to a different service. This service will

then process the request.

Consistency

There are two types of consistency: File metadata consistency and file content

consistency. File metadata consistency is provided with the mechanisms described in the

section called “Concurrent File Updates”. File content consistency is provided through

the use of versioning.

To ensure file contents are not corrupted derived file attributes such as file length

and checksums are stored in the metadata store. A client module can then verify the

downloaded file contents against these given attributes. A file can be considered corrupt

if the file size or a checksum does not match the given value.

Efficiency

For a complete analysis of SILENUS efficiency please see the section called

“Model Performance Analysis”.

Idempotency

Idempotence is the quality of something that has the same effect if used multiple

times as it does if used only once. This is usually an issue with asynchronous network

messaging without a reply. A message could be sent multiple times to increase the

probability that at least one of the messages arrives. A server has to ensure that even

though it receives the message multiple times it is only executed once.

The SILENUS system does not show this problem because every method call has

a return value. This return value is either data returned from the call or an exception in

case of any network failure. The return value can be examined, and the message resent

90

to a different server. Should any error occur during the method call, the transaction at

the service will be aborted and the state of the service will be reset to the previous state

through a rollback operation.

In the rare case that an error occurs during the return from the function call this

behavior will still have idempotency issues. The service will behave as if the call was

successful, while the requestor will see the call as failed and resend the message. This

repeated call may be sucessfull or not: If the original request made a change that is

unrepeatable, such as deleting a file, the second call will result in an error. If the original

request was repeatable, such as setting attributes to a certain value, then the action will

just be repeated. As of right now this issue is unsolved. A potential solution would be to

use message sequence numbers to detect duplicate messages. This will have to be further

investigated.

Security, Access Control, Authentication

The security concept for SILENUS is described in the section called “Security”.

Managing change

One of the challenges in any distributed file system is handling changes. Changes

can occur on two levels: File content may be changed or file metadata may be changed.

Change in file metadata

Changes in file metadata occur every time the file content stays the same, but new

information for the file is available. This does not only refer to the classical file metadata,

such as file owner, or file name, but to all information stored in the metadata store. It

includes information such as the directory a file is on or the location of the file contents.

Each change in file metadata triggers an event that needs to be sent to the

other metadata stores. Since the metadata stores should contain the same information,

it is necessary to synchronize them. An overview on how the metadata stores keep

synchronized is given in the section called “Metadata store synchronization”.

91

mds3 :MetadataStore

mds2 :MetadataStore

mds1 :MetadataStore

localMDS:MetadataStore:ClientModule
1 : change

3a : sync

3b : sync

3c : sync

2 : apply

Created with Poseidon for UML Community Edition. Not for Commercial Use.

Figure 4.25. A metadata change

Change in file content

Changes in file content are handled through auto versioning. Every time a file

is saved, a new version of that file is created. The old versions will stay intact. Instead

of an actual change in file data, the change operation now becomes two operations: A

change in file metadata, and the upload of new file content. The change in file metadata

is handled with the same metadata synchronization process as for the regular metadata

change. The same upload process as for a new file handles the change in file data.

MetadataStore has:
v2.location: bs/XXX
v1.location: bs/YYY

ByteStore now has
v1 and v2 of the file

:MetadataStore

:ByteStore

:ClientModule

4 : upload(v2)

2 : download (v1)

5 : newVersion

1 : getLocation

3 : modify

Created with Poseidon for UML Community Edition. Not for Commercial Use.

Figure 4.26. Change of file content

Partially modified files will have to be handled differently. If only a small part

of a large file changes, it is inconvenient to create a full new file version. In this case,

the change will now become three events: First, the existing version of the file on

the byte store is pseudo-deleted. The location information will be removed from the

metadata store, but the file content will stay in the byte store. This will ensure that no

other processes accesses the file at the same time. After that, the file contents can be

modified. When the modification is done, the new file version will be created pointing to

the modified file.

92

Auto versioning may lead to many versions. If a file is saved regularly, auto

versioning can create multiple and overly many backup copies. One example for this

is the auto save feature in common text-processing applications: It will automatically

save an open document every 5 minutes. In a 4-hour work session this amounts to 72

versions. In this case it is probably not worth keeping all versions. Traditional backup

systems keep one version per day. An optimizer service needs to be added which

supports automatic removal of old versions. One potential algorithm would check the

time between versions. A version that is superseded by another version after a short

interval is probably less worth keeping than a version that is replaced after a longer time

span. Versions that are too old may also be deleted by this version garbage collector

service. Another approach would be to use user-defined attributes, such as "frozen

version" or "final version". These versions could be kept for a certain timespan, while

"work versions" of the same file may safely be deleted. This topic is open for future

research. Some possible approaches are shown in [44] and [45].

Metadata store synchronization

As shown in the section called “Change in file metadata”, the metadata stores are

synchronized. When a metadata store receives a change request, it applies that request to

its own store and sends out change information to all other available metadata stores. In

an ideal environment with all metadata stores available and no events happening at the

same time this would lead to consistency. Unfortunately these two assumptions are not

true.

An algorithm has to be found that provides consistency across multiple metadata

stores. First, consistency has to be defined. Then, an order of events has to be established

to know which events are newer and may override older events. Once this is done,

an algorithm can use that information to provide synchronization that leads to more

consistency.

Consistency

Consistency needs to be defined before the term can be used. Three types of

consistency are introduced: Global consistency, group consistency, and local consistency.

93

Global consistency requires that all metadata stores have the exact same

informational state. If one of the metadata stores receives a change request and applies it,

the system will become globally inconsistent. After all metadata stores are updated, the

system will be global consistent again.

Group consistency requires all metadata stores that are currently reachable from

one metadata store to have the same informational state. If one of the metadata stores

receives a change request and applies it, the system will be group inconsistent. After

it sends an update request to all available metadata stores, the system will be group

consistent.

Local consistency applies to a single metadata store. If a change request is made

and applied, the metadata store is already locally consistent. That change should be

persistent in the metadata store until changed again on either the same metadata store or

from another metadata store that has the same state.

Consistency requirements

After defining consistencies, it can be looked at what types of consistencies are

desirable and possible.

Global consistency is the most desirable but impossible with the given

requirements. The system should support disconnected operation. As long as at least one

node is disconnected from the rest of the nodes, it is impossible for any update packets

to reach that node. Therefore the disconnected nodes will never be able to have the same

state until they are reconnected.

Group consistency is very desirable and achievable. As seen in the definition, any

metadata store can send its update packets to all connected metadata stores. The updates

can then be applied to these other metadata stores. There are two problems that can occur.

The first one is a reconnected metadata stores. Theses will not have received all update

packets that where sent before. They need to detect this time lapse and synchronize

accordingly. If two conflicting changes where made, they need to be resolved. The

second case happens if two conflicting changes are made to two metadata stores that are

connected. Each metadata store will try to apply the change and then send update packets

to the other stores. A conflict occurs which needs to be resolved. This second case is just

a special version of the first case. It therefore does not need special handling.

94

Whenever an update packet from another metadata store is applied, it must be

ensured that the local consistency on the metadata store is kept. Update packets from

other metadata stores can destroy local consistency when they contain changes from an

older state. It must therefore be ensured that a conflicting update packet is only applied if

the remote metadata store knew about the current state of the local metadata store.

Measure of consistency

We can introduce a measure of consistency. We will assume that we have a

number N of metadata stores. Each metadata store will know about a number E of

metadata change events. For each individual metadata store we define its consistency as:

This measurement will always have a value in the range [0..1]. It will be 0 for a

new metadata store. If the metadata store if completely synchronized (global consistent)

then it will be 1.

To get a measure of consistency for the whole system we need to sum up the

known events in every metadata store:

This measurement will always have a value in the range]0..1] as long as N > 0

and E > 0.

For both measurements, a higher value, as close to 1 as possible is desirable. It

is therefore mandatory optimize the system to reach a value as closest to 1 as possible.

Global consistency is achieved when Ctotal = 1.

To reach global consistency, each node has to know about all events that have

happened in the system. It is therfore necesarry to communicate the events to other nodes,

and apply these events locally.

95

In the SILENUS model, group consistency is achieved by sending events to all

connected metadata stores. Whenever an event occurs, it is sent to all metadata stores that

can be reached. When a node is disconnected, it will not receive any events. It therefore

has to be ensures that it receives the events onces it is connected with the other nodes

again.

Order of events

In a distributed system, the state of the system depends on the time that this

system was in this state. It is therefore required to have a notion of time. Time has do

define an order of events. This order can then be used to recreate a change log or to

decide which events to apply. First, existing algorithms for distributed order of events are

investigated, and then a new algorithm is proposed.

To provide an order of events, a notion of time t, where te defines the time for an

event e, must provide the following properties:

• t must be strictly monotonic increasing for every event.

• te1 < te2 iff e1 happened before e2

• te1 > te2 iff e1 happened after e2

• te1 = te2 iff e1 and e2 are the same event on the same machine

• te1 || te2 iff e1 and e2 happen at the same time on different machines.

The first guess at providing an order of events is to use the real time clock.

Every node would get the time from a global time server. It would then be easy to

find out which events happened when and which events should override older events.

Unfortunately, this would require all nodes to keep exact time and reconnect to the global

time server often enough. The GPS system is an example of a distributed system that

uses very exact time. Unfortunately, such an exact time is not available in real world

applications. Synchronization with a global time service is impossible for disconnected

hosts. The computer clock can give an approximation for the time, but it is not always

exact. The local clock may be set to a faulty time on purpose. Also, real time does not

provide a notion of events happening in parallel. [70, 41]

96

Instead of using a global absolute clock a logical clock is used. A logical clock is

a monotonically incrementing software counter. It will start out at time zero. It is required

that there is at least one clock tick between two events, so t is increased after every event.

This time is strictly monotonic and allows comparison. If all events are time stamped, it

becomes possible to reconstruct the order in which events occurred. This works very well

for a single system, but shows limitations when applied to a distributed system. [42]

Timestamps work fine when all network messages arrive before new messages

are sent of. Figure 4.27, “An event diagram using logical clocks” shows an example for

this type of messaging. The individual elements on one process can be ordered. Every

process can detect in which order events where generated.

Figure 4.27. An event diagram using logical clocks

This system shows its limitations when network messages are lost. This may

have happened due to one service being disconnected. Events that originated in different

processes cannot be ordered. Figure 4.28, “An equivalent event diagram” shows an event

diagram that is equivalent to the one in Figure 4.27, “An event diagram using logical

clocks”. However, the events now happened at different times. Without global knowledge

this is impossible to detect from within the processes.

Figure 4.28. An equivalent event diagram

97

To order events in a distributed system, a time stamp on the local process is not

enough. Every event needs to be time stamped with the global time at every system. This

leads to vector clock timestamps. In vector time, every system keeps its own counter.

A vector clock V contains the logical clock for every connected system. Figure 4.29,

“Global vector time” shows an example of events tagged with vector time.

Figure 4.29. Global vector time

Unfortunately, a system with fully working vector clocks would need a reliable

observer. In a truly distributed system this is impossible. Instead, the vector time is

approximated with the best knowledge of a system. In a vector clock system, each node

keeps the knowledge of its own logical clock and the logical clocks of all its peers.

This clock vector is appended to all network messages. Other systems can then use

this information to update their own vector clock and to check if the received message

was current. Vector clocks can be used to provide total ordering of events in a system.

Figure 4.30, “Vector time propagation” shows an example of such an ordered system.

[43]

98

Figure 4.30. Vector time propagation

The vector clock algorithm is as follows:

• If an event occurs locally, increment the own clock.

• If an event is received, set each clock to the maximum of the clock received and the

known clock. Increment your own clock by one.

Using this algorithm we can now compare vector clocks and define an absolute

ordering of events. We will compare the received time vector Vr with the local time

vector Vl.

• If all components of Vr >= Vl (but Vr != Vl) then the received message is newer than

the local state. Receive all events from the remote system and apply them.

• The case that all components of Vr <= Vl (but Vr != Vl) is not possible. A metadata

store will increment its own clock before sending out events, therefore at least

the clock component Vr which corresponds to the sender must be greater than the

component stored at the receiver side.

• If some components of Vr > Vl and some components of Vr < Vl then some events

happened in parallel. In this case, the receiving metadata store needs to retrieve all

events from the sending metadata store and merge the contents.

If a merge occurs there are two possible cases:

99

• None of the events concern the same files. In this case, the received events can be

applied directly.

• If some of the events concern the same files, a conflict occurs. This conflict needs to be

resolved.

The algorithms described in this section are commonly known and verified.

Unfortunately, the traditional vector clock algorithm shows some problems, which will

now be discussed.

Dual-Clock Time Vectors

The problem with this time vector algorithm is that it does not keep accurate track

of the actual changes, but rather of the messages. According to the original algorithm

the clock is incremented every time an event is received. If this time vector is then sent

to a third party, this other host could not distinguish if the time was increased because

a new event occurred or because another event was merged. Figure 4.31, “Vector clock

problem” shows an example.

Figure 4.31. Vector clock problem

In this particular example, the first node receives an external event. It increments

its own clock and propagates the event to all other nodes. These nodes apply the change

and increment their own time vector. Another event occurs on the second node. It

increments its time vector and notifies all other node. The first node will just apply the

changes. The third node, however, will detect a conflict.

100

To solve the problem with single-time vector clocks a new dual time vector-clock

system is introduced. A local timer counts only events that originated locally, whereas

the global timer counts both local and external events. The time vector now contains

both clocks for all nodes. The local component is used for time comparison, whereas the

global component is used to recreate change data. When comparing these time vectors,

only the local components of the time vector are compared. It will result in one of these

four possibilities:

• If forall n: Vlr(n) = Vll(n) then Vr = Vl. Both nodes have the same information. Merge

global components by setting them to the maximum of the current value and the

received value.

• If forall n: Vlr(n) >= Vll(n) and Vlr != Vll then Vr > Vl. The received message is newer,

all changes may be applied and the components updated by setting every component to

the maximum of the current and received value and increasing the own global clock.

• If forall n: Vlr(n) <= Vll(n) and Vlr != Vll then Vr < Vl. The received message is older.

Ignore the events but merge global components by setting them to the maximum of the

current value and the received value

• If there exists an m, n: Vlr(n) > Vll(n) and Vlr(m) < Vll(m) then Vl || Vr. Some events

have happened in parallel. A potential conflict has occurred that must be resolved.

After resolving the conflict, set every component to the maximum of the current and

received value and increase the own global clock.

This algorithm shows a lower rate of false conflict detection. Figure 4.32,

“Dual-clock time vectors with local and global counter” shows the same events as

Figure 4.31, “Vector clock problem”. Since no actual conflict occurred, none is detected.

101

Figure 4.32. Dual-clock time vectors with local and global counter

Properties of Dual-Clock Time Vectors

Since the dual-clock time vectors are a new algorithm, we have to prove its

properties. The requirements for time given in the section called “Order of events” were:

• t must be strictly monotonic increasing for every event.

• te1 < te2 iff e1 happened before e2.

• te1 > te2 iff e1 happened after e2.

• te1 = te2 iff e1 and e2 are the same event on the same machine.

• te1 || te2 iff e1 and e2 happen at the same time on different machines.

Each of these required properties is now investigated. For each property, local

events and remote events have to be investigated. The dual-clock time vector can without

loss of generality be defined at:

102

To prove that t is strictly monotonic increasing it must be shown that Vnew > Vold.

The algorithm states that in the case of a local event both the local and global clock of the

current system have to be increased, therefore:

We can immediately see that forall n: Vlnew >= Vlold and Vnew != Vold. Therefore

the requirement Vnew > Vold is satisfied.

The second case is the case of received remote events. There are four sub cases:

1. Vr = Vl. In this case, no event has happened; Vl does not have to increase.

2. Vr < Vl. In this case, the received event is older; Vl does not have to increase.

3. Vr > Vl. In this case, the received event is newer; Vl must increase.

4. Vr || Vl. In this case, events have happened in parallel; Vl must increase.

In the sub cases 3 and 4 Vnew is defined as:

103

The use of the max function satisfies the condition forall n: Vlnew >= Vlold. Vnew

!= Vold follows directly from the sub case selection, would Vnew = Vold then sub case 1

would have been selected. This proves that the dual vector clock algorithm satisfies the

requirement: t must be strictly monotonic increasing for every event.

The next property that must be proven is that te1 < te2 iff e1 happened before e2.

This property is a direct result from t being strictly monotonic increasing for every event.

The properties te1 > te2 iff e1 happened after e2 and te1 = te2 iff e1 and e2 are the

same event on the same machine also follow directly from the property that t is strictly

monotonic increasing.

The property te1 || te2 iff e1 and e2 happen at the same time on different machines

can be proven as follows. Assuming two nodes N1 and N2 have the same vector Vstart at

some point:

After two events happened in parallel on both machines, the time vectors for

nodes N1 and N2 will be:

104

When comparing the two time vectors, VN1,l(N1) > VN2,l(N1) and VN1,l(N2) <

VN2,l(N2). Given the definition of parallelism these vectors are detected as VN1 || VN2.

The other direction is to provide that if VN1 || VN2 then there must be events on

more than one host. This can be proven by looking at the algorithm: The only time the

own local clock increases is if an event happened locally. Therefore, if more than one

local clock has changed, there must be events that happened on more than one host.

The dual-clock time vector algorithm still supports all the properties that

where required originally. It can therefore provide a reliable order of events for a

synchronization mechanism.

Performance of Dual-Clock Time Vectors

When looking at performance for dual-clock time vectors, the different operations

have to be looked at first. There are three operations that are needed: Comparing time

vectors, increasing time vectors, and merging time vectors.

The easiest case is increasing a time vector. In the case of a local event, two

entries in the vector are changed. In the case of an event from the outside, one component

in the vector is changed. The required time is therefore O(1).

Comparing time vectors requires a comparison of every component. The required

time is therefore O(n) where n is the numbers of participating nodes total in the system.

In the case of the SILENUS system, this is the number of metadata stores.

Merging time vectors requires again a comparison and setting of every single

component. The required time is also O(n).

105

When a host rejoins an existing network, it will discover all other hosts. It will

have to compare its time vector with all hosts on the system. It will only have to merge

the time vector with the first host it encounters as it will have the current time afterwards.

It then hast to increase its own clock. The total time required for synchronization is

therefore O(n)*O(n) + O(n) + O(1) = O(n2).

A SILENUS deployment with 1000 metadata stores could therefore need up

to 106 operations for its synchronization. The operations required for synchronizing

dual-clock time vectors are all simple integer operations. An integer operation uses very

few clock cycles. Assuming about 100 clock cycles per operations, which is probably too

high, it would take 108 clock cycles. Current computers running with processor speeds

in the gigahertz range can run 109 clock cycles per second. Synchronization with 1000

nodes would therefore take less than 1/10 of a second on a modern computer.

Conflict avoidance

Even if there is a potential conflict, there is, and in most cases will not be,

an actual conflict. The ordering of events using the dual vector clocks only gives the

information that two or more events have happened at the same time.

These events must be related to create an actual conflict. In the case of SILENUS

metadata, events are only related if they apply to the same node. Event applying to

different nodes can therefore be applied without problems. Some event may not make

sense together, such as deletion of a directory, and creation of a new file in the same

directory, but they do not conflict.

The relation can even be specified more exactly on a field basis. If two different

fields on the same node have changed, these can be merged without conflicts. If a file

is renamed on one node, and modified on another, both changes are not in conflict with

each other.

The last-changed-on metadata can never create a conflict. This data is updated

every time any data of the node changes. As such, it would always lead to a conflict.

However, this data is only used for conflict resolution. It is therefore not important what

the actual value is.

106

Conflict resolution through virtual duplication

One possible conflict resolution mechanism is virtual duplication. Virtual

duplication addresses the issue of local consistency and requires no direct user

interaction.

An automatic conflict resolver will require no user interaction. If a file is modified

in multiple places, the system should be able to provide a conflict handling strategy. This

strategy should not require user interaction. In most environments it is impossible or

impracticable to ask the user which conflicting option to choose. This should be done

automatically.

One issue with automatic conflict management is that it can break local

consistency. A change may be made to a local metadata store. Then this metadata store

gets synchronized with another metadata store where a conflict occurs. The users on both

metadata stores expect their action to take precedence over the conflicting action from the

other user.

The Coda distributed file system introduced virtual duplication. It is used in the

code file system to resolve conflicts between two versions of the same file with updated

file content. In SILENUS this method is not applied to file content. It is applied to all

changes in file metadata. Changing the file contents adds a new version and therefore

triggers a change in file metadata. But other changes in file metadata are possible that

may need to be resolved.

Virtual duplication provides a file under three different names: It will append a

.version to the files depending on which store it was modified. It will also provide the

file under its original name, as a soft link pointing to the version that was produced on

this particular host. Figure 4.33, “Virtual duplication example” shows an example.

107

Store A contains: bla.txt (version 1)

Store B contains: bla.txt (version 2)

Stores get disconnected

File bla.txt is modified on store A

File bla.txt is modified on store B

Store A contains: bla.txt (version 2.A)

Store B contains: bla.txt (version 2.B)

Stores get reconnected

Store A shows: bla.A.txt (version 2.A)

 bla.B.txt (version 2.B)

 bla.txt -> bla.A.txt

Store B shows: bla.A.txt (version 2.A)

 bla.B.txt (version 2.B)

 bla.txt -> bla.B.txt

Figure 4.33. Virtual duplication example

Solving conflicts this way minimizes direct user interaction. Users can manually

resolve the conflict without any special tools whenever they need to. Consistency on the

same system is provided through soft links.

This way of resolving conflicts has the drawback that inconsistencies between

different stores may now exist. These inconsistencies are only in the file name and not the

file data. Conflicts will still have to be resolved manually.

The switchback problem

One hardship with independent synchronization is the switchback problem.

Figure 4.34, “The switchback problem” gives a graphics illustration. The switchback

problem occurs if two distinct stores that contain the same information. These stores

synchronize and merge at the same time with two other stores containing another set of

information. If they resolve the conflict differently then they will again create different

versions, which will lead to a conflict.

108

01 02

03 04

01 02

03 04

01 02

03 04

A

A

B

B

C C

D D

E

E

F

F

Figure 4.34. The switchback problem

This problem can be solved if both metadata stores resolve a conflict in the exact

same manner and arrive at the exact same solution. This requires two things when using

virtual duplication: The names must be exactly the same and the generated uids must be

exactly the same. Figure 4.35, “A solution for the switchback problem” shows a graphical

illustration.

01 02

03 04

01 02

03 04

01 02

03 04

A

A

B

B

C C

C C

C

C

C

C

Figure 4.35. A solution for the switchback problem

The first problem is that the names of the files must be exactly the same. In the

algorithm outlined above, the id of the synchronizing metadata store is used as an extra

file name. This is insufficient, as it leads to different file names depending on the nodes

involved in the synchronization. Instead, the id of the node that has last changed the

metadata is used. This information was stored in the last-changed-on attribute.

Generating the same new ids is the second problem. To provide support for this,

the original id extended with the last-changed-on information. The link will keep the

original id. The two conflicting versions will get the original id with the last-changed-on

information appended. This may happen again, since there may be another conflict in one

of those files.

In this section, a complete solution to synchronize metadata stores was given.

To provide proper synchronization, consistency among metadata stores was defined. A

new algorithm for distributed time based on dual-clock time vectors was introduced. A

conflict resolution algorithm based on virtual duplication was described. The switchback

problem and a possible solution where shown. Using the methods described in here,

109

the metadata stores can synchronize with each other very efficiently. However, the

algorithms described here also apply to other areas of distributed applications: The

dual-clock vector time algorithm can be used for any order of events in a distributed

system. The conflict resolution algorithm can be applied to any key-value based data.

Security

SILENUS has two needs for security: Authentication and Privacy. Users need to

be securely identified and it must be made sure that only users with the right privileges

can modify data. Data stored in the SILENUS system must be kept private. This is

especially difficult since data is transmitted over an open network and may be stored on

insecure nodes.

The classic security concept is authenticating with the node that provides the

service. This approach works well in a traditional client - server environment. In a large

distributed environment this would require the user credentials to be replicated among

all service providers. This is an administrative challenge. It is also not very secure, as

credentials may be intercepted or read by local administrators and users in the network.

A better approach uses tokens. Instead of authenticating with the service provider,

a user will authenticate with one central server. The server will then issue a token to the

user. This token can be used to authenticate with services providers which will verify

the tokens authenticity with the central authentication server. This approach is used by

Kerberos [46]. It works very well for smaller distributed applications, but does not scale

beyond one organization. It also requires one particular node to be always available.

A problem with most existing security concepts is that they don't allow existing

authentication and user databases to be re-used. Every system has its own user and

password database. Most system can import users from other systems, but importing

passwords is very often a problem. Passwords are usually stored in some encrypted

format and cannot be exported. The current solution is to adapt applications to different

credential providers.

Special credential mechanisms such as fingerprint scanners and smart cards

are hardly ever supported. In few cases, some applications such as computer login are

adapted for these devices. However, the keys stored on such a system could be used for

all kinds of services.

110

What is needed is a scalable security system that makes use of existing

credentials. It should support different administrative domains, but still provide one

unique privacy and authentication mechanism.

Proposition

To solve this problem the following assumption is made: In large scale system

it is more important to recognize returning users. It is not important which identity a

user has as long as the user has the same identity when connecting again. Using this

assumption a user could provide own credentials. As long as it is ensured that the

credentials are safe the user can be uniquely identified.

Trusted third party model

Allowing the user to provide own credentials can lead to an explosion of user

accounts. Therefore a user account has to be verifiable by a trusted source. This is

commonly referred to as a trusted third-party model.

In a trusted third part model a user authenticates with an authentication service.

The authentication service will then provide verification that a given user is always the

same. The service provider can then verify that a user is the same. Figure 4.36, “Basic

trusted third party model” gives an example.

Figure 4.36. Basic trusted third party model

The list of third parties should be small and change seldom. This information will

have to be configured on every service provider. It should change as little as possible.

Every change would require administration.

A trusted third party can be any service providing users. It could be an LDAP

server, a windows domain server, a Kerberos server, or a trusted party signing public

keys. It is only required that the server can verify users.

Decoupling the authentication service

The basic trusted third party model requires the service provider to be able to talk

to the authentication service directly. This is undesirable, and very often not possible. It is

also not defined how the credentials are passed to the service provider.

111

A standard for credentials needs to be defined. This standard should be common,

and should allow verification without talking back to the original service. X500 is such a

standard. It is based on public key cryptography.

The authentication provider will have two additional requirements: It will have

to provide a public key which is signed by a trusted third party and it will have to be

able to sign small network requests. The actual private key will never have to leave

the authentication service. The service provider can then verify the public key with

its own trust-store. It can verify all network requests with the public key. Figure 4.37,

“Authentication with public-key cryptography and trust-store” gives an example. This

model works very well with authentication services that provide public key cryptography

such as smart cards.

Figure 4.37. Authentication with public-key cryptography and trust-store

To provide support for existing models that are not based on X500 an

authentication adapter service is needed. This adapter service provides the required

services and uses the existing authentication service as back-end. If will have to be run on

a secure system.

It is important that the adapter service is able to create new keys for users that

have not yet authenticated themselves with this services. If a new user authenticates

herself, a new key must be created. This key must be automatically signed by the adapter.

The signature from the adapter must be listed as a trusted third party in the truststores.

Figure 4.38, “Authentication with public-key cryptography and trust-store” gives an

example of the complete authentication process.

112

Figure 4.38. Authentication with public-key cryptography and trust-store

113

Privacy

A requirement for a data grid is providing privacy. In a data grid data is stored

on different nodes in the network. Each one of theses nodes may have a different

administrator or may be compromised. It is therefore important that a security system

provides privacy. Data stored in the network by a user should only be readable by that

user. Users listening on the network or local administrators should not be able to read all

data.

To provide privacy the same security system should be reused. It is now possible

to recognize returning users, so it should be possible to give access only to the user

that has originally stored the data. In typical systems this happens using symmetric

encryption. A user encrypts data with a secret key, and can decrypt the data using the

same secret key.

It is not feasible to require the user to manually keep track of the encryption

keys needed for their data. Therefore the encryption key itself is stored with the data.

To ensure that it is not compromised, the key data is encrypted using public key

cryptography.

Public key cryptography is already provided by all authentication providers

for signing messages. This system can therefore easily be extended to provide support

for encryption and decryption of data. Since the key data is small the workload on the

authentication service is not significantly increased.

When the information is retrieved the encrypted symmetric key is retrieved along

with the data. The service requester will forward this information to the authentication

service which will then decrypt the key data. This decrypted key data can then be used to

decrypt the actual file data.

Roles

The system described so far provides support for single users but not for groups

of users and different roles. An extra step is needed to support user groups and roles.

Belonging to a group or a role is the same in this context. If a user belongs to the group

administrators she may assume the role of an administrator. To support user roles, a new

service called "Role Manager Service" (RMS) is introduced.

114

Role Manager Service

The role manager service provides mapping from user to roles. Given a user

handle, the role manager service will provide credentials for all roles this user belongs to.

There may be multiple role manager services.

The role manager service acts like a service provider and an authentication service

in one. A user will authenticate against an existing authentication service. Using the

provided credentials, the user will authenticate again against the role manager service,

which will in turn provide credentials for the roles this user is in. It will work similar

to the existing authentication services. Figure 4.39, “Authentication via role manager

service” gives an example of a role manager use.

Figure 4.39. Authentication via role manager service

Using multiple role manager services provides scalable administration. A smaller

part of a larger organization, such as a department at a university, may provide their

own role manager service. The credentials from this role manager service can be used to

authenticate access to local resources, such as file storage or lab access.

Splitting up security credentials into different authentication services and role

manager services provides support for scalability. Users can have centrally managed

accounts, but their privileges may be controlled by single parts of the organization.

Management for these roles can be delegated to local administrators without giving them

full access.

115

Nomadic RMS

The role manager service may be replicated to different nodes. Since the RMS

has a copy of the secret keys for different roles, it may only be replicated to nodes that

are trustworthy. In most cases, server computers in the local part of the organization

are trustworthy, and sometimes client computers, if their users do not have local

administrator rights. Replicating an RMS gives the usual benefits of replication, such as

reliability and scalability.

To support disconnected operation, a subset of the roles existing on a particular

RMS may be copied. A user may need to use her credentials while not connected to

the network, to access data stored on a local nomadic system, such as a laptop. To

provide access, a subset of the roles may be copied onto the users host. This is supported

by the nomadic RMS. The nomadic RMS will replicate only the roles that contain a

particular user. The user can then access these credentials locally, providing support for

disconnected operation.

The local administrators for the hosts running a nomadic RMS must be

trustworthy. A local administrator has full rights on the host and is able to extract and

intercept all keys, undermining the security. Therefore only keys of roles the user is part

in may be copied. The administrator of the main RMS may also specify which roles may

be copied at all. If a user running a nomadic RMS is removed from a role all keys need to

be changed and all existing data needs to be re-encrypted.

Model Performance Analysis

To analyze the performance of the SILENUS system, we have to first identify

what to analyze and how. The performance is expressed in terms of time T needed to

perform a certain operation. We define the following terms:

cm

The client module. May be the Service UI, the WebDAV adapter, or any other.

sf

The SILENUS facade module.

mds

The metadata store service involved.

116

bs

The byte store involved.

tm

The transaction manager.

lbs

The local byte store, for the caching use case.

T(op)

Time for an operation.

P(service)

The time this services needs to process the given operation.

BW(service1,service2)

The bandwidth between two services, given in data / time. If there are multiple links

between both services this is the bandwidth of the narrowest link.

L(service1,service2)

The latencty between two services. This gives the time it takes to send a zero-sized

packet from service1 to service2, without waiting for a return message. If there are

multiple links between both services this is the total time to traverse all links.

size

The size of the file to be uploaded / downloaded.

We will also make the following assumptions:

• Network links are symmetrical. That is BW(s1,s2) == BW(s2,s1) and L(s1,s2) ==

L(s2,s1). This true on most network connections. DSL and cable Internet are notable

exceptions.

• The size of method call and return messages is much smaller than the given bandwidth.

In most cases, the method call and return messages will not contain a large data

payload. The model is greatly simplified by not taken the bandwidth into account for

these messages

• All services are available and already discovered. Discovering services and switching

over to different services whenever a service becomes unavailable uses extra time. To

simplify this model, this is not considered.

117

Given these definitions and assumptions several use cases can now be analyzed.

To get an idea what these time values mean here are some network measures. These

measurements where gathered experimentally and are to be understood as estimates only.

Type Bandwidth Latency

100 MBit LAN 11 MByte/s 0.08 ms

11 MBit WLAN 1.2 MByte/s 0.8 ms

Cable Modem 0.45 / 0.06 MByte/s 25 ms

Internet (USA -> Germany) 0.1 MByte / s 75 ms

Table 4.1. Examples of network types in use today

Browse files

:MetadataStore:Silenus:ServiceUI

4 : attributes

3 : expandNode:User

5 : attributes

2 : expandNode

6 : directory listing

1 : list directory

Figure 4.40. Browse files use case

The browse files use case is very straightforward. Adding the times for the

sequence we get:

Equation 4.1. Browse file performance

There are two factors that could be dominant here. If we assume that the hosts are

much faster than the network (L >> P) we can reduce this to:

Equation 4.2. Browse file performance in slow network

118

Which would estimate to a time between 0.3 ms on a local network to 300 ms to

an Internet network (assuming all 3 services are located on different continents, which is

unlikely).

Upload files

To analyze the file upload speed we will have to look at both the pull and push

file upload. In this case we are only interested in the speed for the actual user module,

and not in anything that happens in the network afterwards. For the performance analysis

we will stop as soon as the client module is done. The timing for both cases is therefore

almost identical. There are extra messages in the push file upload use case.

:MetadataStore :TransactionManager

:ByteStore

:Silenus

:ServiceUI
1 : uploadFile

10b : commit

7b : prepare

8a : uploadFileData
:User

5 : createNode

4 : createByteSequence

6 : commit

3 : createTransaction

7a : ByteSequenceAccessor

2 : uploadFile

10a : commit

9a : prepared7c : prepare

Figure 4.41. Push file upload use case

119

:TransactionManager:MetadataStore

:Silenus

:ByteStore:ServiceUI

5b : createNode
6b : commit

3 : createTransaction

1 : uploadFile
:User

9a : commit

8a : prepared7c : prepare

5a : downloadFileData

2 : uploadFile

4 : createByteSequence

9b : commit

7b : prepare

Figure 4.42. Pull file upload use case

Equation 4.3. Upload performance

Assuming again that L >> P we set P = 0 and simplify:

Equation 4.4. Upload performance in slow network

The performance will depend greatly on the file size and the network used. Using

the sample network values and some sample file sizes a speed estimate can be made.

120

File size LAN WLAN Cable Internet

0 0.32 ms 3.2 ms 100 ms 300 ms

1 kb 0.40 ms 4 ms 102 ms 310 ms

10 kb 1.2 ms 11.3 ms 120 ms 397 ms

1 mb 90.3 ms 836 ms 2322 ms 10300 ms

1 gb 93 s 853 s 2275 s 10240 s

Table 4.2. Estimated upload times for pull file upload

For small files (< 1kb) the network latency is the dominant factor. For larger files

(>10kb) it is the bandwidth between the client module and the byte store service that

determines the speed of the upload.

This analysis uses a single source for the file. Work is currently done to

investigate download from multiple sources, which should greatly improve performance.

Download files

When downloading there are two cases to consider. The first one is direct

downloading to the client module. The second one involves caching the downloaded file

locally. Here, the second use case can again be expressed in terms of the first use case.

:ByteStore

:MetadataStore:Silenus:ServiceUI:User
1 : download

7 : bytesequence

2 : download

4 : metainfo

3 : expandNode

8 : download

6 : bytesequence

5 : getBytesequence

Figure 4.43. Download without caching use case

:ByteStore:ByteStore

:MetadataStore:Silenus:ServiceUI:User
1 : download

9b : bytesequence

2 : download

4 : metainfo

3 : download

10b : download

9a : download

6 : bytesequence

5 : getBytesequene

8 : bytesequence

7 : downloadFrom

Figure 4.44. Download with caching use case

121

Equation 4.5. Download performance

Assuming again that L >> P we set P = 0 and simplify:

Equation 4.6. Download performance in slow network

For the example networks and some example file sizes this leads to the following

results:

File size LAN WLAN Cable Internet

0 0.48 ms 4.8 ms 150 ms 450 ms

1 kb 0.56 ms 5.6 ms 152 ms 460 ms

10 kb 1.4 ms 12.9 ms 170 ms 547 ms

1 mb 90.5 ms 838 ms 2372 ms 10450 ms

1 gb 93 s 853 s 2275 s 10240 s

Table 4.3. Estimated download times without caching

122

Again, for small files the dominant factor is the latency. For large files the

bandwidth is more decisive.

For downloading with caching it depends where the local byte store is located. If

it is located on the same host as the client module the transfer will be fast, because it is

local. But these numbers show that the local byte store does not have to be on the same

host. If the original service is located on the Internet, a byte store service in the local

network will not add a significant overhead.

123

CHAPTER 5. VALIDATION

Conceptual SILENUS Validation

There are two types of validation: Conceptual validity and operational validity.

Some features, e.g. remote access and migration, are so inherit in the design that they

can be validated if the given approach is followed. Other items, such as disconnected

operation, have to be tested through experiments.

Figure 5.1. Sargent Circle

To verify the proposed architecture a conceptual model has to be designed.

The conceptual model will describe a software system that solves the given problem.

Conceptual model validity is defined as determining that the theories and assumptions

underlying the conceptual model are correct and that the model representation of the

problem entity is reasonable for the intended purpose of the model. Since the conceptual

model is derived from the architecture it follows that it is valid if the architectural model

is valid.

124

Class-level Design

To develop a conceptual system model an object-oriented approach is chosen. As

such, the whole system is split into individual packages. Each package is then split into

several classes.

Package Diagram

The most natural mapping is to create one package for every component in the

SILENUS system. Figure 5.2, “Package overview for the SILENUS system” shows the

top-level package diagram. The core package contains the interfaces. The util package

contains common utilities. The silenus package contains the SILENUS facade and the

human interface. The optimizer package contains optimizer services. The nfs package

holds the implementation for the NFS adapter. The midas package contains the metadata

store implementation. The compatibility package contains compatibility adapters. The

byzantium package contains the byte store implementation.

util silenus optimizer

nfs midas core

compatibility byzantium

cd: Package Overview: silenus

Created with Poseidon for UML Community Edition. Not for Commercial Use.

Figure 5.2. Package overview for the SILENUS system

Class Diagrams

Each package will consist of multiple classes. The class diagrams for all packages

are shown here.

125

Figure 5.3, “SORCER interfaces in core package” shows the SORCER interfaces

in the core package. These interface conform to the SORCER notion of an exertion,

where an exertion defines a method name and a service context. The service context

defines the data for the call.

 createByteSequence(in param: ServiceContext): ServiceContext

 getByteSequence(in param: ServiceContext): ServiceContext

 getFileAttribute(in param: ServiceContext): ServiceContext

 getProviderID(): ServiceID

 getSupportedAttributes(in param: ServiceContext): ServiceContext

«interface»

SorcerByteStore

 createNode(in context: ServiceContext): ServiceContext

 deleteNode(in pc: ServiceContext): ServiceContext

 expandNode(in context: ServiceContext): ServiceContext

 getTimeVector(in pc: ServiceContext): ServiceContext

 registerForEvents(in pc: ServiceContext): ServiceContext

 retrieveChangeLogSince(in pc: ServiceContext): ServiceContext

 retrieveListOfAllActiveNodes(in pc: ServiceContext): ServiceContext

 updateNode(in context: ServiceContext): ServiceContext

«interface»

SorcerMetadataStore

 createNode(in pc: ServiceContext): ServiceContext

 deleteNode(in pc: ServiceContext): ServiceContext

 expandNode(in context: ServiceContext): ServiceContext

 setAttributes(in pc: ServiceContext): ServiceContext

«interface»

SorcerFileStore

 downloadFile(in context: ServiceContext): ServiceContext

 registerForEvents(in pc: ServiceContext): ServiceContext

 replicateFile(in pc: ServiceContext): ServiceContext

 uploadFile(in context: ServiceContext): ServiceContext

«interface»

Coordinator

Figure 5.3. SORCER interfaces in core package

The SORCER interfaces are used when SILENUS is accessed through a

service-oriented program. However, internally and externally am object oriented interface

is provided. This interface follows the traditional object oriented approach. Figure 5.4,

“Object-oriented interface to metadata store”, Figure 5.5, “Object-oriented interface to

byte store”, and Figure 5.6, “Object-oriented interface to SILENUS facade” show the

diagrams for the metadata store, the byte store, and the SILENUS facade.

126

ALIVE_EVENT: long

CREATION_FILEDATA_EVENT: long

CREATION_METADATA_EVENT: long

changedAttrs: Object

HAS_SYNCHED_EVENT: long

serialVersionUID: long

sourceItems: Msuid

timeVector: Time

UPDATE_FILEDATA_EVENT: long

UPDATE_METADATA_EVENT: long

FileStoreEvent

FileStoreEvent

 getChangedAttrs(): Map

 getSourceItems(): Set

 getTimeVector(): Map

FileStoreEvent

itemID: UUID

originatorIDs: ServiceID

ROOTID: Msuid

serialVersionUID: long

 Msuid(in itemUID: UUID)

 appendID(in sid: ServiceID)

 equals(in obj: Object): boolean

 fromString(in name: String): Msuid

 hashCode(): int

 randomMsuid(): Msuid

 toString(): String

 withOriginatorID(in serviceID: ServiceID): Msuid

Msuid

createNode

 deleteNode(in node: Msuid, in recursive: boolean)

 expandNode(in node: Msuid): Map

 getProviderID(): ServiceID

 getTimeVector(): Map

 registerForEvents(in listener: RemoteEventListener, in desiredLease: long): Lease

retrieveChangeLogSince

 retrieveListOfAllActiveNodes(): Collection

updateNode

serialVersionUID: long

MetadataStoreChangeLog

 getChangedAttrs(): Map

 getTimeVector(): Map

MetadataStoreChangeLog

msuid: Msuid

serialVersionUID: long

NodeCreated

 getAttributes(): Map

 getMsuid(): Msuid

NodeCreated

«interface»

MetadataStore

global: long

local: long

serialVersionUID: long

 Time()

 Time(in localTime: long, in globalTime: long)

 getGlobal(): long

 getLocal(): long

 incrementGlobal()

 incrementLocalAndGlobal()

 setGlobal(in newGlobal: long)

 setLocal(in newLocal: long)

 toString(): String

Time

key
 - timeVector0..1

 - sourceItems

*

 - timeVector 0..1

key

Figure 5.4. Object-oriented interface to metadata store

127

 openInputFileChannel(): FileChannel

«interface»

InputFileChannelAccessor

 openOutputFileChannel(): FileChannel

«interface»

OutputFileChannelAccessor

HEXBASE: int

NULLBSUID: Bsuid

part: long

serialVersionUID: long

uuid: UUID

 Bsuid(in uuidPart: UUID, in partPart: long)

 equals(in obj: Object): boolean

 fromString(in name: String): Bsuid

 hashCode(): int

 nullBsuid(): Bsuid

 randomBsuid(): Bsuid

 toString(): String

Bsuid

createByteSequence

createByteSequence

 getByteSequence(in uid: Bsuid): InputFileChannelAccessor

 getFileAttribute(in uid: Bsuid, in attribute: String): String

 getProviderID(): ServiceID

 getSupportedAttributes(): Collection

bsuid: Bsuid

serialVersionUID: long

writeableByteSequence: OutputFileChannelAccessor

 ByteSequenceCreated(in newWriteableByteSequence: OutputFileChannelAccessor, in newBsuid: Bsuid)

 getBsuid(): Bsuid

 getWriteableByteSequence(): OutputFileChannelAccessor

ByteSequenceCreated

«interface»

ByteStore

Figure 5.5. Object-oriented interface to byte store

 getMetadataStore(in oldID: ServiceID): MetadataStore

«interface»

RemoteSilenusAccessor

createNode

 deleteNode(in node: Msuid, in recursive: boolean)

 downloadFile(in node: Msuid): InputFileChannelAccessor

 expandNode(in node: Msuid): Map

 registerForEvents(in listener: RemoteEventListener, in desiredLease: long): Lease

 replicateFile(in msuid: Msuid, in byteStore: ServiceID): boolean

setAttributes

uploadFile

uploadFile

«interface»

FileStore

serialVersionUID: long

 ServiceUnavailableException(in whichService: String)

ServiceUnavailableException

Figure 5.6. Object-oriented interface to SILENUS facade

The detailed information on these interfaces can be found in Appendix A,

Reference.

128

Technical Architecture

The actual implementation of these interfaces was done using the Java language

and existing frameworks. We will describe the technical architecture and the deployment

of the services during the validation.

The technical architecture describes which packages and frameworks have been

used in developing the prototype. Figure 5.7, “SILENUS Technical Architecture” shows

the technical architecture.

Figure 5.7. SILENUS Technical Architecture

129

Operational SILENUS Validation

To validate the proposed solution the design and its implementation have to be

validated against the problem statement. The solution should provide all the requested

core features. It should provide all the given architectural qualities. In addition, it should

provide all the use cases for the given roles.

To validate through experiments a prototype was developed. The architectural

model was then being tested against this prototype. The experimental setup is as

following:

The implemented system and its components where deployed in the SORCER

lab. The services where started on different machines using different architectures. The

experiments that where conducted where: Validation of the use cases in a connected

system, validation of the meta computer role using the SORCER proth application, and

validation of disconnected use using a laptop. Each one of these experiments is now

explained in more detail.

Deployment Diagram

To conduct the experiment the services where started on different hosts in the

SORCER lab. Figure 5.8, “Deployment Diagram” shows the complete overview over

the hosts involved in the experiment. Not all the services shown here where relevant for

all experiments. The hosts Yew, Willow, Persimmon, Lime, and Hemp are servers in

the lab. They where used to simulated a distributed server environment. The host Yucca

simulated a desktop machine that was used to access the services. The host Cordelia is a

laptop that was used to verify disconnected operation.

130

Figure 5.8. Deployment Diagram

Validation in a Connected System

After the services where deployed, the use cases where verified. The host Yucca

was used to display the ServiceUI human interface user agent. The ServiceUI was used

to verify the use cases. The host hemp provided and used the NFS adapter. This was used

to verify the use cases using built in operating system support. Data integrity was verified

using built-in functionality and using the actual saved data. The use cases where verified

using the ServiceUI, the NFS adapter and the mobile client and gateway.

The use cases that where validated using the ServiceUI where: browse files,

upload files, download files, modify file metadata, replicate files, provision service, and

stop service manually.

Most of this functionality could be verified at the same time, as the use cases

depend on each other. To download a file, it must be found first through file browsing.

Once the file is found, it is displayed, for which it needs to be downloaded.

The browse files and the download file use cases proved to be successful. A

service browser was invoked on the client host. The service browser picked up the

SILENUS facade services running on the server hosts in the lab. Both facade services

provided the ServiceUI user agent. This user agent showed the file directory structure

131

that was present in the SILENUS system. Figure 5.9, “Using the ServiceUI to browse

files” shows a screenshot of the user agent displaying the file and directory structure. The

selected file was downloaded to the client machine and displayed there.

Figure 5.9. Using the ServiceUI to browse files

The same ServiceUI was also used to verify the other use cases. The files, which

are displayed, have been uploaded prior using the same ServiceUI. A local file was

selected, and then uploaded into the SILENUS system. The byte replicator service was

running and immediately replicated the file as soon as it was uploaded. When the byte

replicator was not running, the files where still uploaded to a random byte store.

Modifying file metadata was tested on several levels: The directory structure in

the SILENUS system is pure metadata; so just creating a directory did already modify

the metadata. When a file was uploaded, its metadata was filled with reasonable default

values. When the attribute completer service was running, this metadata was completed

with the checksum attributes for sha and md5. All attributes could be also be modified

manually. This was tested by renaming files and modifying attributes such as file content

type.

File replication was tested using the hoard functionality in the ServiceUI and the

automated replication service. The hoard function checked if a byte store on the local

machine is available, and if so, initiates replication to the local machine. This worked

132

well for the case where a local byte store exists, but showed to have too long timeout

when no local byte store could be found. The byte replicator service worked very well: It

was tested by terminating on of the byte stores on the network. The byte replicator then

replicated the files to the third byte store available.

Service provisioning was tested using the RIO framework. The two optimizer

services (byte replicator and attributes completer) where implemented as RIO service

beans. As such, they could be successfully deployed on any host running a cybernode

service. Provisioning the other services proved to be more difficult. The byte store and

the metadata store need a local data directory. This must be available on the running

machine. There was also a problem with RIO-assigned Service Ids and the way the

SORCER framework handles Service Ids. These issues need further investigation, but the

optimizer services served as a proof of concept.

Stopping a service manually was the easiest use case to test. There are two ways

of stopping a service: Killing the actual service process, and terminating the service

gracefully. When the service process is killed by force, it stays visible in the lookup

service until its lease expires. This was sometimes confusing, as the service was still

visible, but not responding. When a service was terminated gracefully through the destroy

method, it properly deregistered.

Since the ServiceUI is the most specific client, it was used to verify most of

the operations. The other interfaces had to provide less functionality due to protocol

constraints in case of the NFS adapter and computational constraints in case of the mobile

client.

The NFS adapter was used to validate the use cases: browse files, upload files,

download files, and modify file metadata. The NFS adapter provides support for all

operations present in the NFS version 2 protocol. As such, the directory was mounted

on a UNIX machine. The directories could be browsed using the operating systems

build in functionality. Files could be downloaded, uploaded, and edited directly using

existing applications. Figure 5.10, “Standard UNIX ls application used for browsing”

shows a screenshot of the standard UNIX ls application being used for browsing the files.

Figure 5.11, “Standard UNIX cat application used for download” shows a screenshot

of the cat application that is used to display a file in the system. The NFS adapter was

also tested on a Mac OS X system where more graphical browsers and applications

133

where used. Mac OS X build in TextEdit seemed a very good candidate. Unfortunately,

it creates and renamed several temporary files when saving, resulting in an administrative

overhead and a significant performance impact.

Figure 5.10. Standard UNIX ls application used for browsing

Figure 5.11. Standard UNIX cat application used for download

The mobile gateway and client where used to validate the use cases: browse

files, and download files. The restraints here where imposed by the limited capability of

a mobile phone device. The tests where done using a mobile phone emulator from the

J2ME development toolkit. The current implementation provides read-only functionality,

which is sufficient for testing purposes. Figure 5.12, “Mobile client used for browsing

and displaying files from the file store” shows the mobile client being used to browse

files in the file store. It also shows the mobile client being used to download and display

files stored in the system.

134

Figure 5.12. Mobile client used for browsing and displaying files from the file

store

These test have shown that the user role works fine, not matter which interface the

user selects. The ServiceUI could provide the most functionality. Existing applications

can be used through operating system adapters. The mobile client and gateway can

provide the file system content anywhere.

Validation for the Metacomputer Role

To validate the metacomputer role the proth application was chosen. Proth is

a grid application that searches for large prime numbers. It has been used in previous

experiments to show other aspects of the SORCER framework. It uses the SORCER

file store service to deploy an application across multiple hosts. It also uses the file store

to transport input data to the service provider. After the calculation, the output data is

written back into the file store.

135

The proth application was validated using a compatibility adapter for the existing

SORCER file store service. The requested functionality was mapped from the old

file store interface to the new SILENUS file store interface. No code changes where

necessary to the existing proth application.

Proth is a calculation intensive grid application. The data transported through

the file store is rather small. There where therefore no significant performance boosts or

delays in using the SILENUS file store.

Validation for a Disconnected System

One of the main strength of the SILENUS model is that it expects and handles

disconnection. To test disconnection, two approaches where chosen: Simulate

disconnection by terminating services, and actual disconnection by unplugging a network

cable.

When simulating disconnection by terminating services everything worked as

expected: The services disappeared. The facade picked up another metadata store. When

uploading a new file, the facade picked another byte store to store the data in. Changes

could still be made to the system. When the original metadata store was started up again,

it synchronized with the metadata store on the network and applied all changes. The byte

replicator replicated all files that where available on only one byte store.

To simulate concurrent modification, two sets of services where run. First, both

sets of services where run simultaneously. Some files where uploaded and directories

created to test metadata propagation and replication. Then one set of services was shut

down. The remaining services could still be used to browse and modify the file system.

Two files where modified. Then this set of services was completely shut down and the

other set of services was started. They still contained the old information, which could be

browsed. Two files where modified: One was the same file that was modified before; the

other file was another one that was not modified on the first set of services. Then the first

set of services was brought up again. Both metadata stores immediately synchronized.

The unrelated files just propagated their changes. The concurrently modified file was

virtually duplicated, resulting in three files: Two with the actual file content, and a

symbolic link to one of them.

136

Actual disconnection proved to be more difficult to validate. To test real

disconnection, one set of services was run in the SORCER lab. Another set of services

was run locally on a laptop. At first, the laptop was connected to the network. Browsing

and downloading files worked just as expected. When the network cable was unplugged,

two problems occurred: The network interface was shut down, and the services where

still visible.

The first problem was in the network interface. Modern operating systems such

as Windows XP or Mac OS X can detect if a network cable is plugged in or unplugged.

They will automatically disable the network interface when a cable is unplugged.

This will also delete all IP addresses and routes that where previously assigned to that

interface. Since the services are registered using the external IP address, all services

seemed to disappear. This problem could be solved by forcing the network interface to

stay active. This is, however, not a very good solution. Unfortunately, the registration of

the services is part of the Jini technology that SORCER is building upon. This issue will

have to be investigated more in the future.

The second problem was that of services not disappearing, even though they are

not connected. The reason for this lies in the way Jini manages disconnected resources:

Using leases. Each service holds a lease on its registration. These leases must be renewed

after a certain time to stay active. When a service is shut down properly, it deregisters

itself from the registration service. When it is improper shutdown or disconnected, it will

not disappear until the lease expires. The default timeout for registration leases was set

to five minutes. It could therefore take up to five minutes for a service to disappear from

the registration provider. For the validation, this issue was improved by reducing the

lease timeout. In the future the SORCER framework will support a heartbeat mechanism.

which will allow faster detection of disappearing services.

After restarting the network interface and waiting for the lease timeouts, the

services disappeared as expected. The SILENUS system was still accessible on the

laptop, as well as on the lab servers through a desktop system. Both worked as before. A

file was modified concurrently to test the disconnected operation.

When plugging the network cable back it again took a while for the services

to find each other. This is a similar problem that is inherited from the Jini framework.

Jini registration services send out multicast packets every 30 seconds. Until one of

137

these packets is received, the services are unable to find each other on the network. It

can therefore take a while until the metadata stores discover their reconnection. After

they discovered each other, they exchanged the information and the file store was

synchronized again. The concurrently modified file was virtually duplicated, as expected.

The system worked as expected during its disconnected operation. The detection

of the disconnection and reconnection is very slow. However, when bringing a laptop

back onto the network, it may be permissible to wait one minute before synchronization.

The alternative is decreasing the lease time and decreasing the time between multicast

announcements, flooding the network with more messages. In most cases, waiting for a

short time to resynchronize is permissible, as long this happens very infrequently, such as

once a day when the laptop is connected and disconnected.

Data Integrity

The data integrity was checked using two different methods. The first method was

directly comparing the files in the byte store. The second one was using integrity checks

implemented in the SILENUS administrative UI and in the byte store.

For the first integrity check, the files on the byte store where compared directly to

their originals using the UNIX diff command. No files showed any difference, so the file

transfer into the byte store worked without problems.

The other integrity check was build into the system. Each byte store has the

capability to provide cryptographic checksums for all files stored in it. The supported

algorithms are SHA and MD5. The expected values for these checksums are stored in the

metadata store. When invoking the integrity check, each byte store is asked to compute

the checksum, which is then compared. As expected, there where no differences in the

expected and calculated checksum.

To test the checksum algorithms, a file was intentionally corrupted. When running

the integrity check, the file reported different checksums and was detected as corrupted.

This shows that the file integrity checking works as expected.

138

Validation of Architectural Qualities

The previous tests showed the use cases and disconnected operation. Another

requirement was that the system should provide these architectural qualities: Network

transparencies, confidentiality, global availability, disconnected operation, manageability,

scalability, reliability, modifiability, and platform independence.

The network transparencies are inherited from the service-oriented design. It does

not matter where the actual service is, it will always be available to a user on the current

network. During tests, it showed that it may take time to discover the services, but the

system always works as long as at least one of the services is available. It does not matter

on which host.

Confidentiality was not tested. The security concept was designed, but not

implemented. It could therefore not be tested. However, existing encryption algorithms

have proven itself in the past.

Global availability was tested using the mobile browser, the ServiceUI, and a

prototype of a WebDAV adapter. In all cases the file store and its contents showed to be

available. The mobile browser was tested using an emulator. It connected to the system

using a mobile gateway, which provided the actual files. The ServiceUI was run from

different hosts, where only a service browser was installed and no component of the

actual SILENUS system. The WebDAV adapter prototype was used to connect to the

SILENUS system from a Windows and a Mac OS X host. In both cases the files where

available for browsing, viewing, and modifying.

Disconnected operation was tested using simulated disconnection and actual

network cable disconnection as explained in an earlier section.

Manageability was tested through testing the implemented optimizer services.

When a service was terminated, the byte replicator picked up that there are not enough

copies, and starts replicating files. This showed the concept of autonomic management

services. It could further be improved by adding more optimizer services.

Scalability was not tested on the implementation; it is inherit in the design.

In the design, services federate when a request is made. If the system is overloaded,

new services of the same type can be added to provide more responsiveness. The only

139

services that need to communicate with multiple other services are the metadata store.

The theoretical analysis suggests that the system scales well up to thousands of metadata

store, but this is yet to be proven.

Reliability was tested through disconnecting and randomly terminating services.

As long as there was still at least one of each service available, the system could not be

brought down. It was always available to browse the files. When the right byte stores

were terminated quickly enough the actual file content became unavailable. This could

only be fixed by bringing at least one byte store with the file content back online. This

will need to be improved with better optimizer services in the future.

Modifiability was constantly tested during development. Every time a

modification was made, this update would have to be propagated to all hosts running the

services. In all cases it was enough to just restart the services, and they did download the

newest version of the code on startup.

Platform independence is provided by the choice of the Java platform. In the tests,

the services where run on Windows, Solaris, Linux, and Mac OS X using the i386, sparc,

and powerpc architectures. In all cases the services behaved exactly the same, on any

tested architecture and platform combination.

This validates that all of the architectural qualities other than security that where

requested are actually provided by the system.

Actual Performance

To measure the actual performance tests where conducted using the NFS adapter.

These tests do not only measure the performance of SILENUS, but also the performance

of the network device, the NFS adapter, and the NFS client application.

For local disk to disk a standard copy operation was used and timed. For Disk to

SILENUS a file was uploaded into the SILENUS system. For SILENUS to disk a file

was downloaded from SILENUS to the local hard disk.

This data was collected using the test layout that was shown in the deployment

diagram earlier. The hosts are connected through a 1 GBit network. However, the hosts

involved have a 100 MBit network interface.

140

What 0 kb 10 KB 1 MB 100 MB

Disk to disk 0.0 sec 0.0 sec 0.0 sec 0.7 sec

Disk to

SILENUS

0.2 sec 1.6 sec 1.7 sec 22.8 sec

SILENUS to

disk

0.0 sec 0.1 sec 0.2 sec 16.6 sec

Table 5.1. SILENUS performance over the NFS adapter

This shows that the performance of the SILENUS system is not so much

dependent on the actual file size but rather on the number of requests. Creating an empty

file is almost instant, but it still requires a metadata modification. Retrieving an empty

file is instant, as there is no file content to retrieve. For small files, the time for creating

the file is about 2 seconds, not really dependent on the file size. Retrieving a file is much

faster: No transaction is needed and no modifications are done. For a large file, the

actual network performance shows. The raw data given in the theoretical performance

analysis suggested that a 100 MB file could be transferred in about 9.3 seconds. For file

upload, the SILENUS system reaches 40% of the maximum network performance. For

file download this increases to 56% of the maximal network performance. Given the

overhead of locating the file, transferring it from a byte store to the NFS adapter, and

through the NFS protocol to the local host these values are very satisfying.

This shows that the claim that the SILENUS model performance is just dependent

on the network performance could not entirely be validated. For small files the time it

takes to transfer the data over the network does not outweighs the management overhead.

This is especially true in the creation of files, as several services are involved. However,

once the file gets larger the management overhead diminished and the performance

gets closer to the actual network performance. When the link is slower, such as over the

Internet, there should be no performance impact.

141

CHAPTER 6. CONCLUSION

The questions that were asked in the introduction were: Can a dynamic approach,

such as service-orientation, provide the reliability and stability required for a file system?

And if so, how can this be done? These questions can be answered with: yes, it is

possible to provide a reliable file system. This can be done using the SILENUS model

introduced in this dissertation.

For this dissertation, a new model for a metacomputing file system has been

introduced. The SILENUS model splits up the file storage into separate services for file

content, metadata, and management. These services are not connected statically, but

rather federate dynamically to provide a file system service.

Also, a new methodology for using this metacomputing file system was

introduced. Users can access their files through a zero-install ServiceUI, through a

mobile client, and with existing applications through the use of adapters. The facade

services provide entry points and coordination services for the system. Services can be

autonomically provisioned using the RIO framework. Optimizer services can take over

management tasks and can be tailored to specific user needs.

A new algorithm for metadata store synchronization based on a dual-clock time

vector system was devised. This algorithm is generic and can be used to synchronize

any key-value based data in a distributed and disconnected system. It provides a reliable

method of ensuring data consistency.

The data storage service byte store and metadata store have been designed and

implemented. These services provide support for the storage of the data in the SILENUS

system.

The management services facade, byte replicator, and attributes completer have

been designed and implemented. These services provide management functionality and

access point as specified by the model.

User agents have been invented and developed for desktop and mobile users.

Adapters have been developed for existing operating systems. This gives the user a broad

range of methods to access their stored files.

142

An initial security model for a distributed file storage system has been specified.

However, this model has to be further developed, because full security is beyond the

scope of this dissertation.

This dissertation could only provide a model and greater architecture. There are

several aspects that can be improved. Some have already been outlined throughout the

dissertation and others are described here. Most of these topics are already being actively

investigated by other students.

The byte store to byte store and byte store to user transfer can be greatly

improved. Adam Turner is currently working on distributing files in chunks across

multiple byte stores in federation based on the bittorrent model. This would split up large

files in smaller parts, allowing these parts to be downloaded from different locations. It

would use multiple channels, thus increasing overall performance.

More confidentiality checks can be enforced. This dissertation could barely

scratch the security topic. There are several more decisions to be made: How can

permissions be set, modified, and revoked? How can these be enforced? How can

a policy for a distributed file system be managed? Daniela Inclezan is currently

investigating security in federated systems.

Adam Thomas-Murphy is looking into virtual files and directories. What happens

if only a small part of a file is modified? Would the whole file be re-created? Or can

small changes be made? What if a part in the middle of a file changes size?

The location of the files can also be optimized. Files that are available in the local

network may not need to be replicated. It may make sense to keep at least one copy of

each file at two different physical locations to provide resistance against catastrophes.

Chris Hard is researching ways to optimize the locations of actual file storage.

The current implementation provides an NFS adapter for UNIX systems. In the

original design, a WebDAV adapter for UNIX and Windows systems was suggested.

This adapter is currently being completed by Fajin Wang.

The design also suggested a JXTA adapter for connection to the JXTA content

management service (CMS). This would provide support for files over an existing

wide-area peer-to-peer network. Some questions would have to be answered such

as: How can SILENUS be mapped to JXTA advertisements? How would security be

managed in such a widely distributed system?

143

The optimizer services designed and implemented here barely scratch the surface

of what optimizers could do. One possible optimizer service would try to derive attributes

from file content and add the information to the metadata store. It could read images,

music files, or word documents. The additional information can then be used to quickly

find matching files stored in the system.

Fully automated provisioning would be another exiting topic. Why does a service

need to be started manually when it can be done automatically? Services can provide

their current service state and utilization. Services can automatically be shut down

when underused or automatically be started when overused. This is especially true for

optimizer services, and the SILENUS facade, but can also be applied to metadata stores

and byte stores.

One of the core features was easy installation. The existing system provides

zero configuration: Services can discover themselves automatically. The configuration

necessary on each machine is reduced to creating a network name. However, there should

be a user-friendly way to install, start, and stop the services. Services should be started

automatically when the machine boots up, on all major operating systems.

The system described here accumulates data: Metadata stores keep a lot of old

information to re-create changelogs. Byte stores keep old files for undeletion. At some

point, this old data has to be cleaned. Sophisticated algorithms have to be developed that

can carry out this task.

Even with all these future research topics the framework model has proven itself.

It can be used for file storage in a changing network environment. The future work can

add value to the existing system.

My vision for the future of the SILENUS system would be: I create a document

at work, and modify it, and at five I leave the office and drive home. The system

automatically detects my behavior guessing that I want to continue working, and at that

time automatically replicates the latest copy to my home machine. When I arrive the file

is available locally, so that I can work and create new versions. If my Internet connection

goes down I won't notice, and when it comes back up again the files are automatically

replicated, giving me reliability and dependability.

144

BIBLIOGRAPHY

NORMATIVE DOCUMENTS

[1] Sun Microsystems. RFC 1094. “NFS: Network File System Protocol specification”.
IETF. 1989. http://www.ietf.org/rfc/rfc1094.txt.

[2] B. Callaghan, B. Pawlowski, and P. Staubach. RFC 1813. “NFS Version 3 Protocol
Specification”. IETF. Jun 1995. http://www.ietf.org/rfc/rfc1813.txt.

[3] Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. Jensen. RFC 2518.
“HTTP Extensions for Distributed Authoring – WEBDAV”. IETF. 1999.
http://www.ietf.org/rfc/rfc2518.txt.

[4] G. Clemm, J. Amsden, T. Ellison, C. Kaler, and J. Whitehead. RFC 3253.
“Versioning Extensions to WebDAV (Web Distributed Authoring and
Versioning)”. IETF. 2002. http://www.ietf.org/rfc/rfc3253.txt.

[5] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler, and D.
Noveck. RFC 3530. “Network File System (NFS) version 4 Protocol”. IETF.
2003. http://www.ietf.org/rfc/rfc3530.txt.

[6] G. Clemm, J. Reschke, E. Sedlar, and J. Whitehead. RFC 3744. “Web Distributed
Authoring and Versioning (WebDAV) Access Control Protocol”. IETF. 2004.
http://www.ietf.org/rfc/rfc3744.txt.

[7] “Data Encryption Standard (DES)”. FIPS PUB. 46. U.S. Department of commerce.
National Institute of Standards and Technology. Jan 1977.

[8] “Announcing the Advanced Encryption Standard (AES)”. FIPS PUB. 197. National
Institute of Standards and Technology. Nov 2001.

[9] Java Cryptography Extension (JCE) for the Java 2 SDK, v 1.4.
http://java.sun.com/products/jce.

[10] Tim Lindholm and Frank Yellin. The Java™ Virtual Machine Specification (2nd
Edition). Apr 99. Addison-Wesley Professional. 0201432943.

[11] Bill Venners. The ServiceUI API Specification, v. 1.1a. Jun 2005.
http://www.artima.com/jini/serviceui/Spec.html.

[12] Open Distributed Processing. Reference Model. 10746. ISO/IEC. 1995.

ARTICLES

[13] Paul Leach and Dan Perry. “CIFS: A Common Internet File
System”. Microsoft Interactive Developer magazine. Nov 1996.
http://www.microsoft.com/mind/1196/cifs.asp.

http://www.ietf.org/rfc/rfc1094.txt
http://www.ietf.org/rfc/rfc1813.txt
http://www.ietf.org/rfc/rfc2518.txt
http://www.ietf.org/rfc/rfc3253.txt
http://www.ietf.org/rfc/rfc3530.txt
http://www.ietf.org/rfc/rfc3744.txt
http://java.sun.com/products/jce
http://www.artima.com/jini/serviceui/Spec.html
http://www.microsoft.com/mind/1196/cifs.asp

145

[14] Richard Sharpe. Just what is SMB?. Oct 2002.
http://samba.org/cifs/docs/what-is-smb.html.

[15] M. Satyanarayanan. “Coda: a highly available file system for a
distributed workstation environment”. Workstation operating systems:
proceedings of the Second Workshop on Workstation Operating Systems
(WWOS-II), September 27--29, 1989, Pacific Grove, CA. 114–116.
http://ieeexplore.ieee.org/iel5/267/3322/00109279.pdf. IEEE Computer Society
Press. 1989. 0-8186-2003-X. 0-8186-5003-6 (microfiche).

[16] M. Satyanarayanan, James J. Kistler, Puneet Kumar, Maria E. Okasaki, Ellen
H. Siegel, and David C. Steere. “Coda: A Highly Available File System for a
Distributed Workstation Environment”. IEEE Transactions on Computers. 39 (4).
447-459. 1990.

[17] Ann L. Chervenak, Bill Ahcock, Carl Kesselman, Darcy Quesnel, Ian Foster, Joe
Bester, John Bresnahan, Sam Meder, Steven Tuecke, and Veronika Nefedova.
“Data Management and Transfer in High-Performance Computational Grid
Environments”. Parallel Computing Journal. 28 (5). May 2002. 749-771.
http://www.globus.org/research/papers/dataMgmt.pdf.

[18] Asad Samar, Bill Allcock, Brian Tierney and Heinz Stockinger, Ian
Foster, and Koen Holtman. “File and Object Replication in Data
Grids”. Journal of Cluster Computing. 5(3). 305-314. Sep 2002.
http://www.globus.org/research/papers/FileRepCluster02.pdf.

[19] Gurmeet Singh, Shishir Bharathi, Ann Chervenak, Ewa Deelman, Carl
Kesselman, Mary Manohar and Sonal Patil, and Laura Pearlman. “A
Metadata Catalog Service for Data Intensive Applications”. SC2003:
Igniting Innovation. Phoenix, AZ, November 15--21, 2003. ACM
Press and IEEE Computer Society Press. 2003. 1-58113-695-1.
http://www.globus.org/alliance/publications/papers/mcs_sc2003.pdf.

[20] Anand Natrajan, Marty A. Humphrey, and Andrew S. Grimshaw. “Grids:
Harnessing Geographically-Separated Resources in a Multi- Organisational
Context”. High Performance Computing Systems. Jun 2001.

[21] Dejan S. Milojicic, Vana Kalogeraki, Rajan Lukose, Kiran Nagaraja, Jim Pruyne,
Bruno Richard, Sami Rollins, and Zhichen Xu. Peer-to-Peer Computing. Internal
HP report. Mar 2002.

[22] Anand Natrajan, Anh Nguyen-Tuong, Marty A. Humphrey, and Andrew S.
Grimshaw. The Legion Grid Portal. Grid Computing Environments 2001,
Concurrency and Computation: Practice and Experience. 2001.

[23] Markus Lorch. Symphony - A Java-based Composition and Manipulation
Framework for Computational Grids. Thesis Document, University of Applied
Sciences in Albstadt-Sigmaringen. Jul 2002.

[24] Kandle Kulish, Jerry Perez, and Phil Smith. Multivariate Minimization Using Grid
Computing. Workshop on Grid Applications and Programming Tools. Jun 2003.
Seattle, WA, USA.

http://samba.org/cifs/docs/what-is-smb.html
http://ieeexplore.ieee.org/iel5/267/3322/00109279.pdf
http://www.globus.org/research/papers/dataMgmt.pdf
http://www.globus.org/research/papers/FileRepCluster02.pdf
http://www.globus.org/alliance/publications/papers/mcs_sc2003.pdf

146

[25] Peter J. Braam. “File Systems for Clusters from a Protocol Perspective”. Second
Extreme Linux Topics Workshop. Jun 1999. Monterey CA.

[26] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. “The Google File
System”. 19th ACM Symposium on Operating Systems Principles. 2003.

[27] R. Rivest, A. Shamir, and L. Adleman. “A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems”. Communications of the ACM. 21 (2). 120 - 126.
1978.

[28] Sun Microsystems. Build a Compute Grid with Jini™
Technology. Jini™ Technology White Paper. Dec 2004.
http://www.jini.org/whitepapers/JINI_ComputeGrid_WP_FINAL.pdf.

[29] Carlos Queiroz, Bruno Souza, and Einar Saukas. Beyond Web Services. Combining
Jini™ Network Technology and “Project JXTA” to Take Advantage of Edge
Computing. JavaOne, Sun's 2003 Worldwide Java Developer Conference.

[30] Michael Sobolewski. “Federated P2P Services in CE Environments”. Advances in
Concurrent Engineering. 13–22. A.A. Balkema Publishers. 2002. 90-5809-502-9.

[31] Michael Sobolewski. “FIPER: The Federated S2S Environment”.
JavaOne, Sun's 2002 Worldwide Java Developer Conference. 2002.
http://servlet.java.sun.com/javaone/sf2002/conf/sessions/display-2420.en.jsp.

[32] R. Kolonay and Michael Sobolewski. “Grid Interactive Service-oriented
Programming Environment”. 97–102. Concurrent Engineering: The Worldwide
Engineering Grid. Tsinghua Press and Springer Verlag. 2004. 7-302-08802-0.

[33] Sekhar Soorianarayanan and Michael Sobolewski. “Monitoring Federated Services
in CE”. Concurrent Engineering: The Worldwide Engineering Grid. 89–95.
Tsinghua Press and Springer Verlag. 2004. 7-302-08802-0.

[34] Douglas Thain, Todd Tannenbaum, and Miron Livny. “Condor and the Grid”.
Grid Computing: Making The Global Infrastructure a Reality. John Wiley. Fran
Berman. Anthony J.G. Hey. Geoffrey Fox. 2003. 0-470-85319-0.

[35] Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. “Grid Services for
Distributed System Integration”. Computer. 35. 6. 37–46. Jun 2002. 0018-9162.
http://csdl.computer.org/dl/mags/co/2002/06/r6037.pdf.

[36] Vivek Khurana, Max Berger, and Michael Sobolewski. “A Federated Grid
Environment with Replication Services”. Next Generation Concurrent
Engineering. Omnipress. 2005. 0-9768246-0-4.

[37] Michael Sobolewski, Sekhar Soorianarayanan, and Ravi-Kiran Malladi Venkata.
“Service-Oriented File Sharing”. CIIT conference (communications,internet and
information technology). 633–639. Nov 2003.

[38] Robert Lupton, F. Miller Maley, and Neal Young. “Data Collection for the Sloan
Digital Sky Survey–-A Network-Flow Heuristic”. Journal of Algorithms. 27. 2.
339–356. May 1998.

[39] Eva Arderiu Ribera. “LHC Distributed Data Management”. CHEP 98, Chicago. Nov
1998. http://wwwinfo.cern.ch/asd/rd45/papers/proc_108.ps.

http://www.jini.org/whitepapers/JINI_ComputeGrid_WP_FINAL.pdf
http://servlet.java.sun.com/javaone/sf2002/conf/sessions/display-2420.en.jsp
http://csdl.computer.org/dl/mags/co/2002/06/r6037.pdf
http://wwwinfo.cern.ch/asd/rd45/papers/proc_108.ps

147

[40] Max Berger and Michael Sobolewski. “SILENUS - A federated service-oriented
approach to distributed file systems”. Next Generation Concurrent Engineering.
Omnipress. 2005. 0-9768246-0-4.

[41] Danny Dolev, Joe Halpern, and H. Raymond Strong. “On the possibility and
impossibility of achieving clock synchronization”. STOC '84: Proceedings of the
sixteenth annual ACM symposium on Theory of computing. 1984. 504-511. ACM
Press. 0-89791-133-4.

[42] Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Distributed
System”. Communications of the ACM. 21. 7. 558-565. Jul 78.

[43] Friedemann Mattern. “Virtual time and global clocks in distributed systems”.
Workshop on Parallel and Distributed Algorithms. 215-226. 1989.

[44] Douglas S. Santry, Michael J. Feeley, Norman C. Hutchinson, Alistair C. Veitch,
Ross W. Carton, and Jacob Ofir. “Deciding when to forget in the Elephant
file system”. Symposium on Operating Systems Principles. 110-123. 1999.
http://www.stanford.edu/class/cs240/readings/p110-santry.pdf.

[45] Zachary N. J. Peterson, Randal Burns, Joe Herring, Adam Stubblefield, and Aviel D.
Rubin. “Secure Deletion for a Versioning File System”. Proceedings of File and
Storage Technology (FAST). USENIX. 2005.

[46] J. G. Steiner, B. Clifford Neuman, and J. I. Schiller. “Kerberos: An Authentication
Service for Open Network Systems”. Proceedings of the Winter 1988 Usenix
Conference. 191–201. Feb 1988.

ONLINE RESOURCES

[47] Gnutella Protocol Development. http://www.the-gdf.org/.

[48] OpenAFS. http://www.openafs.org.

[49] Globus Alliance. http://www.globus.org.

[50] Sybase Avaki EII.
http://www.sybase.com/products/developmentintegration/avakieii/
distributedarchitecture.

[51] Lustre. http://www.lustre.org.

[52] Libgcrypt. http://www.gnupg.org.

[53] Sung Kim. WEB-DAV Linux File System(davfs2). http://dav.sourceforge.net/.

[54] Knuth reward check. http://en.wikipedia.org/wiki/Knuth_reward_check.

[55] Sun Microsystems. Java Technology. http://java.sun.com/.

[56] IBM. Java technology. http://www-128.ibm.com/developerworks/java.

[57] Apple Computer. Java for Mac OS X. http://www.apple.com/macosx/features/java/.

http://www.stanford.edu/class/cs240/readings/p110-santry.pdf
http://www.the-gdf.org/
http://www.openafs.org
http://www.globus.org
http://www.sybase.com/products/developmentintegration/avakieii/distributedarchitecture
http://www.sybase.com/products/developmentintegration/avakieii/distributedarchitecture
http://www.lustre.org
http://www.gnupg.org
http://dav.sourceforge.net/
http://en.wikipedia.org/wiki/Knuth_reward_check
http://java.sun.com/
http://www-128.ibm.com/developerworks/java
http://www.apple.com/macosx/features/java/

148

[58] Kaffe.org. http://www.kaffe.org/.

[59] Java Technology. http://www.java.com.

[60] Java 2 Platform, Micro Edition (J2ME). http://java.sun.com/j2me.

[61] JavaServer Pages Technology. http://java.sun.com/products/jsp/.

[62] Java Servlet Technology. http://java.sun.com/products/servlet/.

[63] Jim Driscoll. Jim Driscoll's Blog. Servlet History.
http://weblogs.java.net/blog/driscoll/archive/2005/12/servlet_history_1.html.

[64] Phil Bishop. IncaX. http://www.incax.com.

[65] JXTA. http://www.jxta.org/.

[66] Peter Deutsch. The Eight Fallacies of Distributed Computing.
http://today.java.net/jag/Fallacies.html.

[67] Sun Microsystems, Inc.. System Administration Guide:
Security Services. Using UNIX Permissions to Protect Files.
http://docs.sun.com/app/docs/doc/816-4557/6maosrje8?q=ACL&a=view.

[68] Keith Lea. The Java is Faster than C++ and C++ Sucks Unbiased Benchmark.
http://kano.net/javabench/.

[69] Sloan Digital Sky Survey. http://www.sdss.org/.

[70] Peter H. Dana. Global Positioning System Overview.
http://www.colorado.edu/geography/gcraft/notes/gps/gps_f.html.

BOOKS

[71] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Principles and
Paradigms. Prentice Hall. Jan 2002. 0130888931.

[72] Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in
C, Second Edition. Wiley. Oct 1995. 0471117099.

[73] Charlie Kaufman, Padia Perlman, and Mike Spencer. Network Security: PRIVATE
Commincation in a PUBLIC World. Prentice Hall. 2002. 0-13-046019-2.

[74] Jan Newmarch. A Programmer's Guide to Jini Technology. Apress. Nov 2000.
1893115801.

[75] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems:
Concepts and Design. Addison Wesley. May 2005. 0321263545.

[76] Will Willis, David Watts, and Tillman Strahan. Windows 2000 System
Administration Handbook. Addison-Wesley Professional. Dec 2000. 0130270105.

http://www.kaffe.org/
http://www.java.com
http://java.sun.com/j2me
http://java.sun.com/products/jsp/
http://java.sun.com/products/servlet/
http://weblogs.java.net/blog/driscoll/archive/2005/12/servlet_history_1.html
http://www.incax.com
http://www.jxta.org/
http://today.java.net/jag/Fallacies.html
http://docs.sun.com/app/docs/doc/816-4557/6maosrje8?q=ACL&a=view
http://kano.net/javabench/
http://www.sdss.org/
http://www.colorado.edu/geography/gcraft/notes/gps/gps_f.html

149

APPENDIX A. REFERENCE

Package sorcer.silenus.core

This package defines the core interfaces that are needed to use the SILENUS file

system.

Class Bsuid

Class to handle UUIDs for objects stored in a byte store.

Synopsis

package sorcer.silenus.core;

public class Bsuid implements Serializable {

 // Public Static Methods

 public static Bsuid fromString(java.lang.String name);

 public static Bsuid nullBsuid();

 public static Bsuid randomBsuid();

 // Public Methods

 public boolean equals(java.lang.Object obj);

 public int hashCode();

 public String toString();

}

Methods inherited from java.lang.Object: clone, equals, finalize,

getClass, hashCode, notify, notifyAll, toString, wait

Version

$Revision: 1.2 $ $Date: 2006/09/02 19:26:36 $

Since

Nov 22, 2005

Inheritance Path. java.lang.Object-> sorcer.silenus.core.Bsuid

equals(Object)

150

Synopsis: public boolean equals(java.lang.Object obj);

fromString(String)

Synopsis: public static Bsuid fromString(java.lang.String name);

Parameters

name

the string to parse

return

a Bsuid object, if possible

Tries to create a Bsuid from a given String.

hashCode()

Synopsis: public int hashCode();

nullBsuid()

Synopsis: public static Bsuid nullBsuid();

Parameters

return

the null Bsuid.

Returns the Null Bsuid. The Null Bsuid represents no object.

randomBsuid()

Synopsis: public static Bsuid randomBsuid();

151

Parameters

return

a valid Bsuid.

Creates a random Bsuid.

toString()

Synopsis: public String toString();

Parameters

return

a String representation

Creates a String representation for this Bsuid.

This representation can be parsed with fromString(java.lang.String)

Interface ByteStore

Java interface to a ByteStore.

Synopsis

package sorcer.silenus.core;

public interface ByteStore {

 // Public Methods

 public ByteStore.ByteSequenceCreated createByteSequence(sorcer.silenus.co\

re.Bsuid wantedUID,

 net.jini.core.tra\

nsaction.server.ServerTransaction transaction,

 java.util.Map exp\

ectedMetadata)

 throws java.rmi.RemoteException;

152

 public ByteStore.ByteSequenceCreated createByteSequence(sorcer.silenus.co\

re.Bsuid wantedUID,

 net.jini.core.tra\

nsaction.server.ServerTransaction transaction,

 java.util.Map exp\

ectedMetadata,

 sorcer.silenus.co\

re.InputFileChannelAccessor fileData)

 throws java.rmi.RemoteException;

 public InputFileChannelAccessor getByteSequence(sorcer.silenus.core.Bsuid\

 uid)

 throws java.io.IOException;

 public String getFileAttribute(sorcer.silenus.core.Bsuid uid,

 java.lang.String attribute)

 throws java.io.IOException;

 public ServiceID getProviderID() throws java.rmi.RemoteException;

 public Collection getSupportedAttributes() throws

 java.rmi.RemoteException;

}

Version

$Revision: 1.2 $ $Date: 2006/09/02 19:26:36 $

Since

Nov 15, 2005

See Also

sorcer.silenus.core.SorcerByteStore

Inheritance Path. sorcer.silenus.core.ByteStore

createByteSequence(Bsuid, ServerTransaction, Map)

Synopsis: public ByteStore.ByteSequenceCreated createByteSequence(sorcer.si\

lenus.core.Bsuid wantedUID,

 net.jini.\

core.transaction.server.ServerTransaction transaction,

 java.util\

153

.Map expectedMetadata)

 throws java.rmi.RemoteException;

Parameters

wantedUID

hold the requested Bsuid. May be null. If it is given, the bs will try to create an object

with this uuid, but may always refuse and create a different one.

transaction

the transaction this upload is under. May be null. If used, the BS will report if the

upload succeds. If the transaction fails the newly created file will be deleted.

expectedMetadata

provides some expected properties for the byte sequence. May be

null. If the properties of the uploaded file do not match the ones

given here then the byte sequence will be rejected. Please check

sorcer.silenus.core.FileStoreConstants for possible values. The

bytestore will very likely support things like ATTR_SIZE and ATTR_SHA1.

return

there parameters for this byte sequence.

Exceptions

RemoteException

If a remote IO error occurs.

See Also

sorcer.silenus.core.FileStoreConstants,

sorcer.silenus.core.ByteStore.ByteSequenceCreated

Creates a new Byte Sequence on the byte Store.

createByteSequence(Bsuid, ServerTransaction, Map,

InputFileChannelAccessor)

Synopsis: public ByteStore.ByteSequenceCreated createByteSequence(sorcer.si\

lenus.core.Bsuid wantedUID,

154

 net.jini.\

core.transaction.server.ServerTransaction transaction,

 java.util\

.Map expectedMetadata,

 sorcer.si\

lenus.core.InputFileChannelAccessor fileData)

 throws java.rmi.RemoteException;

Parameters

wantedUID

a requested uid. May be null.

transaction

a transaction object. May be null.

expectedMetadata

expected metadata. If given, the byte sequence must match this data or it will be

rejected.

fileData

a readable byte sequence to initialize this byte sequence to. May be null.

return

The Bsuid of the new byte sequence. The writeableByteSequence is filled in if the

fileData was null.

Exceptions

RemoteException

If a remote IO error occurs.

See Also

createByteSequence(sorcer.silenus.core.Bsuid,

net.jini.core.transaction.server.ServerTransaction,

java.util.Map)

creates a bytesequence and fills it with the data given.

getByteSequence(Bsuid)

Synopsis: public InputFileChannelAccessor getByteSequence(sorcer.silenus.co\

155

re.Bsuid uid)

 throws java.io.IOException;

Parameters

uid

the requested byte sequence.

return

a reable byte sequence that can be used to access this file.

Exceptions

IOException

if any IO errors occur.

Retrieve an accessor to the byte sequence matching the given Bsuid.

getFileAttribute(Bsuid, String)

Synopsis: public String getFileAttribute(sorcer.silenus.core.Bsuid uid,

 java.lang.String attribute)

 throws java.io.IOException;

Parameters

uid

the Bsuid of the byte sequence.

attribute

the requested attribute.

return

value for this attribute or null.

Exceptions

IOException

if any IO errors occur.

Retrieves an intrisic attribute for a stored byte sequence.

156

getProviderID()

Synopsis: public ServiceID getProviderID() throws

 java.rmi.RemoteException;

Parameters

return

the ServiceID of this provider

Exceptions

RemoteException

If a remote IO error occurs.

Standard method to retrieve the UID of the provider.

getSupportedAttributes()

Synopsis: public Collection getSupportedAttributes() throws

 java.rmi.RemoteException;

Parameters

return

a Collection of attribute names.

Exceptions

RemoteException

If a remote IO error occurs.

Retrieves a list of intrinsic attributes suported on this byte store.

Class ByteStore.ByteSequenceCreated

Data class for created byteSequences.

157

Synopsis

package sorcer.silenus.core.ByteStore;

public static class ByteStore.ByteSequenceCreated implements Serializable {

 // Public Constructors

 public ByteStore.ByteSequenceCreated(sorcer.silenus.core.OutputFileChanne\

lAccessor newWriteableByteSequence,

 sorcer.silenus.core.Bsuid newBsuid);

 // Public Methods

 public Bsuid getBsuid();

 public OutputFileChannelAccessor getWriteableByteSequence();

}

Methods inherited from java.lang.Object: clone, equals, finalize,

getClass, hashCode, notify, notifyAll, toString, wait

Inheritance Path. java.lang.Object->

sorcer.silenus.core.ByteStore.ByteSequenceCreated

ByteStore.ByteSequenceCreated(OutputFileChannelAccessor,

Bsuid)

Synopsis: public ByteStore.ByteSequenceCreated(sorcer.silenus.core.OutputFi\

leChannelAccessor newWriteableByteSequence,

 sorcer.silenus.core.Bsuid ne\

wBsuid);

Parameters

newWriteableByteSequence

the writeable byte sequence.

newBsuid

Bsuid of that sequence.

Creates a new ByteSequenceCreated object.

158

getBsuid()

Synopsis: public Bsuid getBsuid();

Parameters

return

Returns the bsuid.

Accessor method for property bsuid.

getWriteableByteSequence()

Synopsis: public OutputFileChannelAccessor getWriteableByteSequence();

Parameters

return

Returns the writeableByteSequence.

Acessor method for property writeableByteSequence.

Interface Coordinator

Java interface to the coordinator part of the SILENUS facade.

These operations are actually to be executed on the facade service itself rather

than on the client

Synopsis

package sorcer.silenus.core;

public interface Coordinator implements Remote {

 // Public Methods

 public ServiceContext downloadFile(sorcer.base.ServiceContext context)

 throws java.rmi.RemoteException,

159

 ServiceUnavailableException;

 public ServiceContext registerForEvents(sorcer.base.ServiceContext pc)

 throws java.rmi.RemoteException,

 net.jini.core.lease.LeaseDeniedException;

 public ServiceContext replicateFile(sorcer.base.ServiceContext pc)

 throws java.rmi.RemoteException;

 public ServiceContext uploadFile(sorcer.base.ServiceContext context)

 throws java.rmi.RemoteException,

 ServiceUnavailableException;

}

Inheritance Path. sorcer.silenus.core.Coordinator

downloadFile(ServiceContext)

Synopsis: public ServiceContext downloadFile(sorcer.base.ServiceContext con\

text)

 throws java.rmi.RemoteException,

 ServiceUnavailableException;

Parameters

context

the parameters as a ServiceContext

return

the result as a ServiceContext

Exceptions

RemoteException

if a remote io error occurs.

ServiceUnavailableException

if not all required services are available.

See Also

downloadFile(sorcer.silenus.core.Msuid)

download a file.

160

registerForEvents(ServiceContext)

Synopsis: public ServiceContext registerForEvents(sorcer.base.ServiceContex\

t pc)

 throws java.rmi.RemoteException,

 net.jini.core.lease.LeaseDeniedException;

Parameters

pc

the parameters as a ServiceContext

return

the result as a ServiceContext

Exceptions

RemoteException

if a remote io error occurs.

LeaseDeniedException

if the lease requested cannot be granted.

See Also

registerForEvents(net.jini.core.event.RemoteEventListener,

long)

register for file store events.

replicateFile(ServiceContext)

Synopsis: public ServiceContext replicateFile(sorcer.base.ServiceContext pc\

)

 throws java.rmi.RemoteException;

161

Parameters

pc

the parameters as a ServiceContext

return

the result as a ServiceContext

Exceptions

RemoteException

if a remote io error occurs.

See Also

replicateFile(sorcer.silenus.core.Msuid,

net.jini.core.lookup.ServiceID)

Initiate file replication.

uploadFile(ServiceContext)

Synopsis: public ServiceContext uploadFile(sorcer.base.ServiceContext conte\

xt)

 throws java.rmi.RemoteException,

 ServiceUnavailableException;

Parameters

context

the parameters as a ServiceContext

return

the result as a ServiceContext

Exceptions

RemoteException

if a remote io error occurs.

162

ServiceUnavailableException

if not all required services are available.

See Also

uploadFile(sorcer.silenus.core.Msuid, java.util.Map),

uploadFile(sorcer.silenus.core.Msuid, java.util.Map,

sorcer.silenus.core.InputFileChannelAccessor)

uploads a file.

Interface FileStore

Java interface to a FileStore.

Synopsis

package sorcer.silenus.core;

public interface FileStore {

 // Public Methods

 public MetadataStore.NodeCreated createNode(java.util.Map metadata)

 throws ServiceUnavailableException,

 java.rmi.RemoteException;

 public void deleteNode(sorcer.silenus.core.Msuid node,

 boolean recursive)

 throws ServiceUnavailableException, java.io.IOException;

 public InputFileChannelAccessor downloadFile(sorcer.silenus.core.Msuid no\

de)

 throws ServiceUnavailableException,

 java.rmi.RemoteException;

 public Map expandNode(sorcer.silenus.core.Msuid node)

 throws ServiceUnavailableException,

 java.rmi.RemoteException;

 public Lease registerForEvents(net.jini.core.event.RemoteEventListener li\

stener,

 long desiredLease)

 throws net.jini.core.lease.LeaseDeniedException,

 java.rmi.RemoteException;

163

 public boolean replicateFile(sorcer.silenus.core.Msuid msuid,

 net.jini.core.lookup.ServiceID byteStore)

 throws java.rmi.RemoteException;

 public Map setAttributes(sorcer.silenus.core.Msuid uuid,

 java.util.Map newAttributes)

 throws ServiceUnavailableException,

 java.rmi.RemoteException;

 public OutputFileChannelAccessor uploadFile(sorcer.silenus.core.Msuid uid\

,

 java.util.Map metadata)

 throws ServiceUnavailableException,

 java.rmi.RemoteException;

 public void uploadFile(sorcer.silenus.core.Msuid uid,

 java.util.Map metadata,

 sorcer.silenus.core.InputFileChannelAccessor fileD\

ata)

 throws ServiceUnavailableException,

 java.rmi.RemoteException;

}

Version

$Revision: 1.4 $ $Date: 2006/10/12 01:41:34 $

See Also

sorcer.silenus.core.SorcerFileStore

Since

Nov 15, 2005

Inheritance Path. sorcer.silenus.core.FileStore

createNode(Map)

Synopsis: public MetadataStore.NodeCreated createNode(java.util.Map metadat\

a)

 throws ServiceUnavailableException,

 java.rmi.RemoteException;

164

Parameters

metadata

the desired node metadata.

return

a NodeCreated object containing the actual metadata that was set and the msuid of the

new node.

Exceptions

ServiceUnavailableException

not all services required to process this request are available.

RemoteException

If a remote IO error occurs.

Creates a new node with the given metadata.

A new node id will be automatically created.

deleteNode(Msuid, boolean)

Synopsis: public void deleteNode(sorcer.silenus.core.Msuid node,

 boolean recursive)

 throws ServiceUnavailableException,

 java.io.IOException;

Parameters

node

the node to delete.

recursive

whether to delete all child nodes.

If set to true, all child nodes and their child nodes, etc. will be deleted.

165

If set to false, the node must not have any child nodes or an IOException will

occur.

Exceptions

ServiceUnavailableException

not all services required to process this request are available.

IOException

If an IO error occurs.

See Also

deleteNode(sorcer.silenus.core.Msuid, boolean)

Deletes a node from this metadata store.

Deleting a node essentially sets most attributes to null.

downloadFile(Msuid)

Synopsis: public InputFileChannelAccessor downloadFile(sorcer.silenus.core.\

Msuid node)

 throws ServiceUnavailableException,

 java.rmi.RemoteException;

Parameters

node

the id of the node to download.

return

a ReadableByteSequence with access to the file content.

Exceptions

ServiceUnavailableException

not all services required to process this request are available.

RemoteException

If a remote IO error occurs.

Tries to download the file with the given Msuid.

166

This function evaluates the location attribute, finds a suitable ByteStore and tries

to retrieve the file contents from there.

expandNode(Msuid)

Synopsis: public Map expandNode(sorcer.silenus.core.Msuid node)

 throws ServiceUnavailableException,

 java.rmi.RemoteException;

Parameters

node

the node to get information about

return

the node metadata.

Exceptions

ServiceUnavailableException

not all services required to process this request are available.

RemoteException

If a remote IO error occurs.

Gets the attributes for a given node.

This is the basic function to retrieve information stored in the SILENUS file

system.

registerForEvents(RemoteEventListener, long)

Synopsis: public Lease registerForEvents(net.jini.core.event.RemoteEventLis\

tener listener,

 long desiredLease)

 throws net.jini.core.lease.LeaseDeniedException,

 java.rmi.RemoteException;

167

Parameters

listener

the listener to register. Should be a remote proxy.

desiredLease

desired length of the lease.

return

a Lease object that can be used to renew the lease.

Exceptions

LeaseDeniedException

the lease request was denied.

RemoteException

If a remote IO error occurs.

See Also

sorcer.silenus.core.FileStoreEvent

Register a listener for FileStoreEvents.

This function is used to register listeners on events. In the case of a change, a

sorcer.silenus.core.FileStoreEvent is sent.

replicateFile(Msuid, ServiceID)

Synopsis: public boolean replicateFile(sorcer.silenus.core.Msuid msuid,

 net.jini.core.lookup.ServiceID byteS\

tore)

 throws java.rmi.RemoteException;

Parameters

msuid

Uuid of the file to replicate

byteStore

Id of the bytestore to target. May be null.

168

return

true if the file was sucessfully replicated.

Exceptions

RemoteException

If a remote IO error occurs.

Initiate replication of a given file to a given bytestore.

setAttributes(Msuid, Map)

Synopsis: public Map setAttributes(sorcer.silenus.core.Msuid uuid,

 java.util.Map newAttributes)

 throws ServiceUnavailableException,

 java.rmi.RemoteException;

Parameters

uuid

the id of the node to change.

newAttributes

set of new attributes. Use null to delete an attribute

return

the complete set of attributes after the change.

Exceptions

ServiceUnavailableException

not all services required to process this request are available.

RemoteException

If a remote IO error occurs.

Sets the attributes for a given Msuid to new values.

This function will only modify the attributes given as parameters. To delete an

attribute, set it to null.

uploadFile(Msuid, Map)

169

Synopsis: public OutputFileChannelAccessor uploadFile(sorcer.silenus.core.M\

suid uid,

 java.util.Map metadat\

a)

 throws ServiceUnavailableException,

 java.rmi.RemoteException;

Parameters

uid

the Msuid of the node to update or null for new nodes.

metadata

the desired node metadata.

return

a WriteableByteSequence to fill in the file contents.

Exceptions

ServiceUnavailableException

not all services required to process this request are available.

RemoteException

If a remote IO error occurs.

See Also

sorcer.silenus.core.OutputFileChannelAccessor,

uploadFile(sorcer.silenus.core.Msuid, java.util.Map,

sorcer.silenus.core.InputFileChannelAccessor)

Allows uploading of file data for new and existing content nodes through push

file upload.

If the given uid is null, a new node id will be created.

If the given uid exisits, a new content version for this particular file will be

created.

A bytestore will be contacted and the location attribute filled in.

This method provides push file upload. It is the users responsibility to open the

WriteableByteSequence, add data, and close it again.

170

uploadFile(Msuid, Map, InputFileChannelAccessor)

Synopsis: public void uploadFile(sorcer.silenus.core.Msuid uid,

 java.util.Map metadata,

 sorcer.silenus.core.InputFileChannelAccess\

or fileData)

 throws ServiceUnavailableException,

 java.rmi.RemoteException;

Parameters

uid

the Msuid of the node to update or null for new nodes.

metadata

the desired node metadata.

fileData

a ReadableByteSequence with access to the file contents.

Exceptions

ServiceUnavailableException

not all services required to process this request are available.

RemoteException

If a remote IO error occurs.

See Also

sorcer.silenus.core.InputFileChannelAccessor,

uploadFile(sorcer.silenus.core.Msuid, java.util.Map)

Allows uploading of file data for new and existing content nodes through pull file

upload.

If the given uid is null, a new node id will be created.

If the given uid exisits, a new content version for this particular file will be

created.

A bytestore will be contacted and the location attribute filled in.

This method provides pull file upload. It will automatically contact the file

content holder and retrieve the file from there.

171

Interface FileStoreConstants

Constants for MetadataStore

This interface provides constants for MetadataStores. It is implemented as an

interface for easy inclusion (implement this interface to use the constants).

Synopsis

package sorcer.silenus.core;

public interface FileStoreConstants {

 // Public Static Fields

 public final static String ATTR_CHILDREN;

 public final static String ATTR_CONTENTLASTMODIFIED;

 public final static String ATTR_CREATIONDATE;

 public final static String ATTR_FILEVERSION;

 public final static String ATTR_LOCATION;

 public final static String ATTR_MAX_COPIES;

 public final static String ATTR_MD5;

 public final static String ATTR_METADATALASTMODIFIED;

 public final static String ATTR_MIN_COPIES;

 public final static String ATTR_NAME;

 public final static String ATTR_OPT_COPIES;

 public final static String ATTR_ORIGNIATOR;

 public final static String ATTR_PARENT;

 public final static String ATTR_SHA;

 public final static String ATTR_SIZE;

 public final static String ATTR_TARGET;

 public final static String ATTR_TYPE;

 public final static String ATTR_TYPE_WAS_SET_BY;

 public final static String EV_CONTEXT_DURATION;

 public final static String EV_CONTEXT_LEASE;

 public final static String EV_CONTEXT_LISTENER;

 public final static String FS_CONTEXT_ATTRIBUTELIST;

 public final static String FS_CONTEXT_ATTRIBUTENAME;

 public final static String FS_CONTEXT_ATTRIBUTES;

 public final static String FS_CONTEXT_ATTRIBUTEVALUE;

 public final static String FS_CONTEXT_CONTENT;

 public final static String FS_CONTEXT_OLD_ATTRIBUTES;

172

 public final static String FS_CONTEXT_RECURSIVE;

 public final static String FS_CONTEXT_SERVICEID;

 public final static String FS_CONTEXT_SUCCESS;

 public final static String FS_CONTEXT_TRANSACTION;

 public final static String FS_CONTEXT_UUID;

 public final static Map MAP_ATTR_DIGEST;

 public final static String MDS_CONTEXT_CHANGELOG;

 public final static String MDS_CONTEXT_MSUIDS;

 public final static String MDS_CONTEXT_TIMEVECTOR;

 public final static String MIMETYPE_DIRECTORY;

 public final static String MIMETYPE_LINK;

 public final static String TYPE_SET_CONTENT;

 public final static String TYPE_SET_EXT;

 public final static String TYPE_SET_OLDCONTENT;

 public final static String TYPE_SET_USER;

}

Version

$Revision: 1.5 $ $Date: 2006/10/02 23:07:22 $

See Also

sorcer.silenus.metadatastore.MetadataStore,

sorcer.silenus.metadatastore.SORCERMetadataStore

Inheritance Path. sorcer.silenus.core.FileStoreConstants

ATTR_CHILDREN

Synopsis: public final static java.lang.String ATTR_CHILDREN

Attribute for children.

This attribute is read-only.

Datatype: Collection<Msuid>.

ATTR_CONTENTLASTMODIFIED

Synopsis: public final static java.lang.String ATTR_CONTENTLASTMODIFIED

attribute name for Last modified date.

173

Datatype: String

ATTR_CREATIONDATE

Synopsis: public final static java.lang.String ATTR_CREATIONDATE

attribute name for creation date.

Datatype: String

ATTR_FILEVERSION

Synopsis: public final static java.lang.String ATTR_FILEVERSION

Attribute name for file version.

Datatype: String

ATTR_LOCATION

Synopsis: public final static java.lang.String ATTR_LOCATION

attribute name for location.

Datatype: Map<ServiceID, Bsuid>

ATTR_MAX_COPIES

Synopsis: public final static java.lang.String ATTR_MAX_COPIES

attribute for maximum number of available copies.

Datatype: long

ATTR_MD5

Synopsis: public final static java.lang.String ATTR_MD5

attribute name for MD5 checksum.

174

Datatype: String

ATTR_METADATALASTMODIFIED

Synopsis: public final static java.lang.String ATTR_METADATALASTMODIFIED

attribute name for Last modified date.

Datatype: String

ATTR_MIN_COPIES

Synopsis: public final static java.lang.String ATTR_MIN_COPIES

attribute for minimum number of available copies.

Datatype: long

ATTR_NAME

Synopsis: public final static java.lang.String ATTR_NAME

attribute name for filename.

Datatype: String

ATTR_OPT_COPIES

Synopsis: public final static java.lang.String ATTR_OPT_COPIES

attribute for optimal number of available copies.

Datatype: long

ATTR_ORIGNIATOR

Synopsis: public final static java.lang.String ATTR_ORIGNIATOR

attribute for originating metadata store.

175

Datatype: String

The originating store is the metadata store the file withh this uuid was last

changed on.

ATTR_PARENT

Synopsis: public final static java.lang.String ATTR_PARENT

attribute name for parent node.

Datatype: String

ATTR_SHA

Synopsis: public final static java.lang.String ATTR_SHA

attribute name for SHA1 checksum.

Datatype: String

ATTR_SIZE

Synopsis: public final static java.lang.String ATTR_SIZE

attribute name for file size.

Datatype: String

ATTR_TARGET

Synopsis: public final static java.lang.String ATTR_TARGET

target for SILENUS links.

Datatype: Msuid

This value stores the target of soft links in the SILENUS file system.

ATTR_TYPE should be set to MIMETYPE_LINK.

176

ATTR_TYPE

Synopsis: public final static java.lang.String ATTR_TYPE

attribute name for mime type.

Datatype: String

ATTR_TYPE_WAS_SET_BY

Synopsis: public final static java.lang.String ATTR_TYPE_WAS_SET_BY

See Also

TYPE_SET_CONTENT, TYPE_SET_EXT, TYPE_SET_USER

who has set the mime type?

Datatype: String

EV_CONTEXT_DURATION

Synopsis: public final static java.lang.String EV_CONTEXT_DURATION

Context path to a lease duration (long).

EV_CONTEXT_LEASE

Synopsis: public final static java.lang.String EV_CONTEXT_LEASE

Context path to a net.jini.core.lease.Lease.

EV_CONTEXT_LISTENER

Synopsis: public final static java.lang.String EV_CONTEXT_LISTENER

Context path to a net.jini.core.event.RemoteEventListener.

177

FS_CONTEXT_ATTRIBUTELIST

Synopsis: public final static java.lang.String FS_CONTEXT_ATTRIBUTELIST

Context path to a single file attribute.

FS_CONTEXT_ATTRIBUTENAME

Synopsis: public final static java.lang.String FS_CONTEXT_ATTRIBUTENAME

Context path to a single file attribute name.

FS_CONTEXT_ATTRIBUTES

Synopsis: public final static java.lang.String FS_CONTEXT_ATTRIBUTES

Context path to file attributes.

FS_CONTEXT_ATTRIBUTEVALUE

Synopsis: public final static java.lang.String FS_CONTEXT_ATTRIBUTEVALUE

Context path to a single file attribute name.

FS_CONTEXT_CONTENT

Synopsis: public final static java.lang.String FS_CONTEXT_CONTENT

Contenxt path to file contents. Can be either a

sorcer.silenus.core.InputFileChannelAccessor or a

sorcer.silenus.core.OutputFileChannelAccessor.

FS_CONTEXT_OLD_ATTRIBUTES

178

Synopsis: public final static java.lang.String FS_CONTEXT_OLD_ATTRIBUTES

Context path to old file attributes.

FS_CONTEXT_RECURSIVE

Synopsis: public final static java.lang.String FS_CONTEXT_RECURSIVE

Context path to the recursive attribute of type java.lang.Boolean.

FS_CONTEXT_SERVICEID

Synopsis: public final static java.lang.String FS_CONTEXT_SERVICEID

Context path to a ServiceID.

FS_CONTEXT_SUCCESS

Synopsis: public final static java.lang.String FS_CONTEXT_SUCCESS

Context path to a bool.

FS_CONTEXT_TRANSACTION

Synopsis: public final static java.lang.String FS_CONTEXT_TRANSACTION

Context path to a net.jini.core.transaction.server.ServerTransaction object.

FS_CONTEXT_UUID

Synopsis: public final static java.lang.String FS_CONTEXT_UUID

Context path to a file sorcer.silenus.core.Msuid.

MAP_ATTR_DIGEST

179

Synopsis: public final static java.util.Map MAP_ATTR_DIGEST

mapping from attribute names for message digests to names common in java

security providers.

MDS_CONTEXT_CHANGELOG

Synopsis: public final static java.lang.String MDS_CONTEXT_CHANGELOG

Context path to a file store change log.

MDS_CONTEXT_MSUIDS

Synopsis: public final static java.lang.String MDS_CONTEXT_MSUIDS

Context path to a list of Msuids.

MDS_CONTEXT_TIMEVECTOR

Synopsis: public final static java.lang.String MDS_CONTEXT_TIMEVECTOR

Context path to a time vector.

MIMETYPE_DIRECTORY

Synopsis: public final static java.lang.String MIMETYPE_DIRECTORY

See Also

ATTR_TARGET

special mime type for directories. You can use this to check if a node is a

directory. Please note: Links to directories will also have children.

MIMETYPE_LINK

180

Synopsis: public final static java.lang.String MIMETYPE_LINK

special mime type for links. A link can point to a directory or a file.

TYPE_SET_CONTENT

Synopsis: public final static java.lang.String TYPE_SET_CONTENT

type was set from file content.

TYPE_SET_EXT

Synopsis: public final static java.lang.String TYPE_SET_EXT

type was set from file extension.

TYPE_SET_OLDCONTENT

Synopsis: public final static java.lang.String TYPE_SET_OLDCONTENT

type was set from older fileversion content.

TYPE_SET_USER

Synopsis: public final static java.lang.String TYPE_SET_USER

type was set by the user.

Class FileStoreEvent

This class represents events within the SILENUS file store system.

A file store event is sent everytime something changes to all interested parties.

Every file store event is designed so that is may be missed without implications.

Synopsis

package sorcer.silenus.core;

181

public class FileStoreEvent extends RemoteEvent {

 // Public Static Fields

 public final static long ALIVE_EVENT;

 public final static long CREATION_FILEDATA_EVENT;

 public final static long CREATION_METADATA_EVENT;

 public final static long HAS_SYNCHED_EVENT;

 public final static long UPDATE_FILEDATA_EVENT;

 public final static long UPDATE_METADATA_EVENT;

 // Public Constructors

 public FileStoreEvent(net.jini.core.lookup.ServiceID sourceService,

 long seqNum, java.util.Map timeVec);

 public FileStoreEvent(net.jini.core.lookup.ServiceID sourceService,

 long eventID, long seqNum,

 java.util.Set changedSourceItems,

 java.util.Map timeVec,

 java.util.Map attrs);

 // Public Methods

 public Map getChangedAttrs();

 public Set getSourceItems();

 public Map getTimeVector();

}

Methods inherited from net.jini.core.event.RemoteEvent: getID,

getRegistrationObject, getSequenceNumber

Methods inherited from java.util.EventObject: getSource, toString

Methods inherited from java.lang.Object: clone, equals, finalize,

getClass, hashCode, notify, notifyAll, wait

Version

$Revision: 1.2 $ $Date: 2006/09/02 19:26:36 $

Inheritance Path. java.lang.Object-> java.util.EventObject->

net.jini.core.event.RemoteEvent-> sorcer.silenus.core.FileStoreEvent

FileStoreEvent(ServiceID, long, long, Set, Map, Map)

182

Synopsis: public FileStoreEvent(net.jini.core.lookup.ServiceID sourceServic\

e,

 long eventID, long seqNum,

 java.util.Set changedSourceItems,

 java.util.Map timeVec,

 java.util.Map attrs);

Parameters

sourceService

the serviceID of the service where the event occured.

eventID

type of the event. Please use the constants defined in this class.

seqNum

the sequence number of the event. Should increase with every event. This is ignored

in the SILENUS core components.

changedSourceItems

a set of Uuids of the file store items that have changed. Use this and the

sourceService to acquire additional information.

timeVec

the timestamp for the change event.

attrs

the attributes that have changed during this event. Only defined if there is exactly one

source item.

Creates a new file store event.

This event can then be sent to all SILENUS listeners.

FileStoreEvent(ServiceID, long, Map)

Synopsis: public FileStoreEvent(net.jini.core.lookup.ServiceID sourceServic\

e,

 long seqNum,

 java.util.Map timeVec);

183

Parameters

sourceService

the service id of the service that is alive

seqNum

a sequence number. Should increase with every event. This is ignored in the

SILENUS core components.

timeVec

the timestamp at the originating service.

Generates a new ALIVE_EVENT.

ALIVE_EVENT

Synopsis: public final static long ALIVE_EVENT

Nothing has changed. This is just to imform that the source node is alive.

CREATION_FILEDATA_EVENT

Synopsis: public final static long CREATION_FILEDATA_EVENT

Actual byte data for a new file has been stored.

CREATION_METADATA_EVENT

Synopsis: public final static long CREATION_METADATA_EVENT

Metadata for a new file has been created.

HAS_SYNCHED_EVENT

184

Synopsis: public final static long HAS_SYNCHED_EVENT

To inform all listeners that we have synched with s/o else. In this case, sourceItem

will not be set, since there were multiple changes.

UPDATE_FILEDATA_EVENT

Synopsis: public final static long UPDATE_FILEDATA_EVENT

File content for an exisiting file has been changed.

UPDATE_METADATA_EVENT

Synopsis: public final static long UPDATE_METADATA_EVENT

Metadata for an existing file has changed.

getChangedAttrs()

Synopsis: public Map getChangedAttrs();

Parameters

return

a map of attributes or null

Returns the attributes that have changed for sourceItem.

This is only defined if there is exactly one source item.

getSourceItems()

Synopsis: public Set getSourceItems();

185

Parameters

return

a set of Uuids of the changed items or null.

Returns the sourceItems. The sourceItem is a set of Uuids of the files which have

changed.

getTimeVector()

Synopsis: public Map getTimeVector();

Parameters

return

the time vector.

Returns the timeVector. The timeVector contains the timestamp of the event.

Interface InputFileChannelAccessor

A readable byte sequence accessor. This class is serializable. It contains all

information necesary to open a readable byte channel.

Synopsis

package sorcer.silenus.core;

public interface InputFileChannelAccessor implements Serializable {

 // Public Methods

 public FileChannel openInputFileChannel() throws java.io.IOException;

}

Version

$Revision: 1.1 $ $Date: 2006/09/02 19:26:36 $

186

Since

Nov 15, 2005

Inheritance Path. sorcer.silenus.core.InputFileChannelAccessor

openInputFileChannel()

Synopsis: public FileChannel openInputFileChannel() throws

 java.io.IOException;

Parameters

return

a newly created and opened readable byte channel.

Exceptions

IOException

if an IO error occurs.

create the readable byte channel that is stored in this sequence.

Interface MetadataStore

Java interface to a MetadataStore.

Synopsis

package sorcer.silenus.core;

public interface MetadataStore {

 // Public Methods

 public MetadataStore.NodeCreated createNode(java.util.Map attributes,

 net.jini.core.transaction.ser\

ver.ServerTransaction transaction)

 throws java.rmi.RemoteException;

 public void deleteNode(sorcer.silenus.core.Msuid node,

 boolean recursive) throws java.io.IOException;

 public Map expandNode(sorcer.silenus.core.Msuid node)

187

 throws java.rmi.RemoteException;

 public ServiceID getProviderID() throws java.rmi.RemoteException;

 public Map getTimeVector() throws java.rmi.RemoteException;

 public Lease registerForEvents(net.jini.core.event.RemoteEventListener li\

stener,

 long desiredLease)

 throws net.jini.core.lease.LeaseDeniedException,

 java.rmi.RemoteException;

 public MetadataStore.MetadataStoreChangeLog retrieveChangeLogSince(java.u\

til.Map timeVector)

 throws java.rmi.RemoteException;

 public Collection retrieveListOfAllActiveNodes() throws

 java.rmi.RemoteException;

 public Map updateNode(sorcer.silenus.core.Msuid node,

 java.util.Map newAttributes,

 java.util.Map oldAttributes,

 net.jini.core.transaction.server.ServerTransaction \

transaction)

 throws java.rmi.RemoteException;

}

Version

$Revision: 1.3 $ $Date: 2006/09/28 00:54:28 $

See Also

sorcer.silenus.core.SorcerMetadataStore

Since

Nov 15, 2005

Inheritance Path. sorcer.silenus.core.MetadataStore

createNode(Map, ServerTransaction)

Synopsis: public MetadataStore.NodeCreated createNode(java.util.Map attribu\

tes,

 net.jini.core.transac\

tion.server.ServerTransaction transaction)

188

 throws java.rmi.RemoteException;

Parameters

attributes

the attributes desired.

transaction

a ServerTransaction if needed.

return

a NodeCreated object containing the actual attributes that where set and the Msuid of

the new object.

Exceptions

RemoteException

If a remote IO error occurs.

creates a node.

deleteNode(Msuid, boolean)

Synopsis: public void deleteNode(sorcer.silenus.core.Msuid node,

 boolean recursive)

 throws java.io.IOException;

Parameters

node

the node to delete.

recursive

whether to delete all child nodes.

If set to true, all child nodes and their child nodes, etc. will be deleted.

189

If set to false, the node must not have any child nodes or an IOException will

occur.

Exceptions

IOException

If an IO error occurs.

See Also

deleteNode(sorcer.silenus.core.Msuid, boolean)

Deletes a node from the file store.

This operations is forwared to a metadata store.

expandNode(Msuid)

Synopsis: public Map expandNode(sorcer.silenus.core.Msuid node)

 throws java.rmi.RemoteException;

Parameters

node

the node id to expand

return

a Map<String,Object> with key-value pairs

Exceptions

RemoteException

If a remote IO error occurs.

See Also

sorcer.silenus.core.FileStoreConstants

Returns metainformation for the given node.

This is the main function to acuire metainformation for a given

node. It returns key-value pairs with the information. Most values will

be of type string, but other object types are possible. Please see the list of

sorcer.silenus.core.FileStoreConstants.

Most notable attributes are:

190

• FileName: ATTR_NAME

• FileType: ATTR_TYPE

• List of children: ATTR_CHILDREN

getProviderID()

Synopsis: public ServiceID getProviderID() throws

 java.rmi.RemoteException;

Parameters

return

the ID of this provider

Exceptions

RemoteException

If a remote IO error occurs.

Standard method to receive the ServiceID of this provider.

getTimeVector()

Synopsis: public Map getTimeVector() throws java.rmi.RemoteException;

Parameters

return

the time vector.

Exceptions

RemoteException

If a remote IO error occurs.

Asks a metadata store for its current time vector.

The time vector can be used to check if a metadata store is in synch.

191

registerForEvents(RemoteEventListener, long)

Synopsis: public Lease registerForEvents(net.jini.core.event.RemoteEventLis\

tener listener,

 long desiredLease)

 throws net.jini.core.lease.LeaseDeniedException,

 java.rmi.RemoteException;

Parameters

listener

the client listener.

desiredLease

length of the desired lease.

return

a Lease object that can be used to renew the lease.

Exceptions

LeaseDeniedException

if the lease cannot be granted.

RemoteException

If a remote IO error occurs.

See Also

sorcer.silenus.core.FileStoreEvent

Registers a client to receive remote events from this metadatastore.

A listener registered with a metadatastore will receive messages of type

sorcer.silenus.core.FileStoreEvent

retrieveChangeLogSince(Map)

Synopsis: public MetadataStore.MetadataStoreChangeLog retrieveChangeLogSinc\

e(java.util.Map timeVector)

192

 throws java.rmi.RemoteException;

Parameters

timeVector

the time vector of the caller.

return

a sorcer.silenus.core.MetadataStore.MetadataStoreChangeLog

object with the information.

Exceptions

RemoteException

If a remote IO error occurs.

Retrieves all the changes that have happend since the given time vector.

retrieveListOfAllActiveNodes()

Synopsis: public Collection retrieveListOfAllActiveNodes() throws

 java.rmi.RemoteException;

Parameters

return

a list of Msuid

Exceptions

RemoteException

If a remote IO error occurs.

Retrieves a list of all items stored in this metadata store that are still active.

An active item is an item that has a parent (is not deleted).

updateNode(Msuid, Map, Map, ServerTransaction)

Synopsis: public Map updateNode(sorcer.silenus.core.Msuid node,

193

 java.util.Map newAttributes,

 java.util.Map oldAttributes,

 net.jini.core.transaction.server.ServerTran\

saction transaction)

 throws java.rmi.RemoteException;

Parameters

newAttributes

the new attributes to set.

node

the node to update.

oldAttributes

old attributes that must be still be set for the command to execute or null.

transaction

a ServerTransaction if needed or null if not.

return

the current attributes of the node given.

Exceptions

RemoteException

If a remote IO error occurs.

Updates a node with the given attributes.

This only updates the values given. You must set a value explicitly to null to

delete it.

Class MetadataStore.MetadataStoreChangeLog

A class representing a metadata store change log.

It contains a list of changed items and their changes. It also contains the current

time vector.

Synopsis

package sorcer.silenus.core.MetadataStore;

194

public static class MetadataStore.MetadataStoreChangeLog implements Seriali\

zable {

 // Public Constructors

 public MetadataStore.MetadataStoreChangeLog(java.util.Map theTimeVector,

 java.util.Map theChangedAttrs\

);

 // Public Methods

 public Map getChangedAttrs();

 public Map getTimeVector();

}

Methods inherited from java.lang.Object: clone, equals, finalize,

getClass, hashCode, notify, notifyAll, toString, wait

Inheritance Path. java.lang.Object->

sorcer.silenus.core.MetadataStore.MetadataStoreChangeLog

MetadataStore.MetadataStoreChangeLog(Map, Map)

Synopsis: public MetadataStore.MetadataStoreChangeLog(java.util.Map theTime\

Vector,

 java.util.Map theChan\

gedAttrs);

Parameters

theTimeVector

the time vector;

theChangedAttrs

the changed attributes.

Creates a new changelog with the new time vector (the later time) and the given

changes.

getChangedAttrs()

195

Synopsis: public Map getChangedAttrs();

Parameters

return

the list of changed items.

Contains a list of changed items and the attributes that have changed.

getTimeVector()

Synopsis: public Map getTimeVector();

Parameters

return

the current time vector.

Contains the current time vector.

Class MetadataStore.NodeCreated

Data class for created mds objects.

Synopsis

package sorcer.silenus.core.MetadataStore;

public static class MetadataStore.NodeCreated implements Serializable {

 // Public Constructors

 public MetadataStore.NodeCreated(sorcer.silenus.core.Msuid uid,

 java.util.Map attrs);

 // Public Methods

 public Map getAttributes();

 public Msuid getMsuid();

196

}

Methods inherited from java.lang.Object: clone, equals, finalize,

getClass, hashCode, notify, notifyAll, toString, wait

Inheritance Path. java.lang.Object->

sorcer.silenus.core.MetadataStore.NodeCreated

MetadataStore.NodeCreated(Msuid, Map)

Synopsis: public MetadataStore.NodeCreated(sorcer.silenus.core.Msuid uid,

 java.util.Map attrs);

Parameters

attrs

Attributes of the new node.

uid

msuid of the new node.

Creates a new NodeCreated object.

getAttributes()

Synopsis: public Map getAttributes();

Parameters

return

Returns the attributes.

Getter method for property attributes.

getMsuid()

Synopsis: public Msuid getMsuid();

197

Parameters

return

Returns the msuid.

Getter method for property msuid.

Class Msuid

Class to represent objects store in the metadata store.

This class provides UIDs that can be extended by adding ServiceIDs. This is

necessary for synchronization.

Synopsis

package sorcer.silenus.core;

public class Msuid implements Serializable {

 // Public Static Fields

 public final static Msuid ROOTID;

 // Public Static Methods

 public static Msuid fromString(java.lang.String name);

 public static Msuid randomMsuid();

 // Public Methods

 public boolean equals(java.lang.Object obj);

 public int hashCode();

 public String toString();

 public Msuid withOriginatorID(net.jini.core.lookup.ServiceID serviceID);

}

Methods inherited from java.lang.Object: clone, equals, finalize,

getClass, hashCode, notify, notifyAll, toString, wait

Version

$Revision: 1.1 $ $Date: 2006/09/02 19:26:36 $

Inheritance Path. java.lang.Object-> sorcer.silenus.core.Msuid

198

ROOTID

Synopsis: public final static sorcer.silenus.core.Msuid ROOTID

Id for the object at the root node.

equals(Object)

Synopsis: public boolean equals(java.lang.Object obj);

fromString(String)

Synopsis: public static Msuid fromString(java.lang.String name);

Parameters

name

the string to parse.

return

a Msuid object, if possible, or null if not.

Tries to create a Msuid from a given String.

hashCode()

Synopsis: public int hashCode();

randomMsuid()

Synopsis: public static Msuid randomMsuid();

199

Parameters

return

a valid Msuid.

Creates a random Msuid.

toString()

Synopsis: public String toString();

Parameters

return

a String representation

Creates a String representation for this Msuid.

This representation can be parsed with fromString(java.lang.String)

withOriginatorID(ServiceID)

Synopsis: public Msuid withOriginatorID(net.jini.core.lookup.ServiceID serv\

iceID);

Parameters

serviceID

the new originatorID

return

the new Msuid

returns a new instance representing a UUID with the same itemID but with a

different originatorID.

Interface OutputFileChannelAccessor

200

A writable byte sequence accessor. This class is serializable. It contains all

information necesary to open a writable byte channel.

Synopsis

package sorcer.silenus.core;

public interface OutputFileChannelAccessor implements Serializable {

 // Public Methods

 public FileChannel openOutputFileChannel() throws java.io.IOException;

}

Version

$Revision: 1.1 $ $Date: 2006/09/02 19:26:36 $

Since

Nov 15, 2005

Inheritance Path. sorcer.silenus.core.OutputFileChannelAccessor

openOutputFileChannel()

Synopsis: public FileChannel openOutputFileChannel() throws

 java.io.IOException;

Parameters

return

an open, writeable byte channel that can be used to write data.

Exceptions

IOException

if an io error occurs

opens up a WriteableByteChannel that can be used to write data.

Interface RemoteSilenusAccessor

201

Interface to a service providing access to other SILENUS services.

Synopsis

package sorcer.silenus.core;

public interface RemoteSilenusAccessor implements Remote {

 // Public Methods

 public MetadataStore getMetadataStore(net.jini.core.lookup.ServiceID oldI\

D)

 throws ServiceUnavailableException,

 java.rmi.RemoteException;

}

Inheritance Path. sorcer.silenus.core.RemoteSilenusAccessor

getMetadataStore(ServiceID)

Synopsis: public MetadataStore getMetadataStore(net.jini.core.lookup.Servic\

eID oldID)

 throws ServiceUnavailableException,

 java.rmi.RemoteException;

Parameters

oldID

invalidate this metadatastore if given. May be null.

return

A proxy to a metadatastore.

Exceptions

ServiceUnavailableException

if no metadata store could be found

RemoteException

if a remote io error occurs.

202

Retrieves a proxy to a running metadatastore.

Exception ServiceUnavailableException

Exception class that states that a needed service is currently unavailable.

Synopsis

package sorcer.silenus.core;

public class ServiceUnavailableException extends Exception {

 // Public Constructors

 public ServiceUnavailableException(java.lang.String whichService);

}

Methods inherited from java.lang.Throwable: fillInStackTrace,

getCause, getLocalizedMessage, getMessage, getStackTrace,

initCause, printStackTrace, setStackTrace, toString

Methods inherited from java.lang.Object: clone, equals, finalize,

getClass, hashCode, notify, notifyAll, wait

Version

$Revision: 1.2 $ $Date: 2006/09/02 19:26:36 $

Inheritance Path. java.lang.Object-> java.lang.Throwable->

java.lang.Exception-> sorcer.silenus.core.ServiceUnavailableException

ServiceUnavailableException(String)

Synopsis: public ServiceUnavailableException(java.lang.String whichService)\

;

Parameters

whichService

the name of the service that is unavailable.

Creates a new ServiceUnavailableException.

203

Interface SorcerByteStore

SORCER interface to a ByteStore.

Synopsis

package sorcer.silenus.core;

public interface SorcerByteStore implements Remote {

 // Public Methods

 public ServiceContext createByteSequence(sorcer.base.ServiceContext param\

)

 throws java.rmi.RemoteException;

 public ServiceContext getByteSequence(sorcer.base.ServiceContext param)

 throws java.io.IOException;

 public ServiceContext getFileAttribute(sorcer.base.ServiceContext param)

 throws java.io.IOException;

 public ServiceID getProviderID() throws java.rmi.RemoteException;

 public ServiceContext getSupportedAttributes(sorcer.base.ServiceContext p\

aram)

 throws java.rmi.RemoteException;

}

Version

$Revision: 1.2 $ $Date: 2006/09/02 19:26:36 $

Since

Nov 15, 2005

See Also

sorcer.silenus.core.ByteStore

Inheritance Path. sorcer.silenus.core.SorcerByteStore

createByteSequence(ServiceContext)

Synopsis: public ServiceContext createByteSequence(sorcer.base.ServiceConte\

xt param)

204

 throws java.rmi.RemoteException;

Parameters

param

the parameters as a ServiceContext

return

the result as a ServiceContext

Exceptions

RemoteException

if a remote io error occurs.

See Also

createByteSequence(sorcer.silenus.core.Bsuid,

net.jini.core.transaction.server.ServerTransaction,

java.util.Map),

createByteSequence(sorcer.silenus.core.Bsuid,

net.jini.core.transaction.server.ServerTransaction,

java.util.Map,

sorcer.silenus.core.InputFileChannelAccessor)

create a new byte sequence on this store.

getByteSequence(ServiceContext)

Synopsis: public ServiceContext getByteSequence(sorcer.base.ServiceContext \

param)

 throws java.io.IOException;

Parameters

param

the parameters as a ServiceContext

205

return

the result as a ServiceContext

Exceptions

IOException

if a io error occurs.

See Also

getByteSequence(sorcer.silenus.core.Bsuid)

retrieve an accessor to a stored byte sequence.

getFileAttribute(ServiceContext)

Synopsis: public ServiceContext getFileAttribute(sorcer.base.ServiceContext\

 param)

 throws java.io.IOException;

Parameters

param

the parameters as a ServiceContext

return

the result as a ServiceContext

Exceptions

IOException

if a io error occurs.

See Also

getFileAttribute(sorcer.silenus.core.Bsuid,

java.lang.String)

Retrieves an intrisic attribute for a stored byte sequence.

getProviderID()

206

Synopsis: public ServiceID getProviderID() throws

 java.rmi.RemoteException;

Parameters

return

the providers ID.

Exceptions

RemoteException

if a remote io error occurs.

See Also

getProviderID()

get the ID of this provider.

getSupportedAttributes(ServiceContext)

Synopsis: public ServiceContext getSupportedAttributes(sorcer.base.ServiceC\

ontext param)

 throws java.rmi.RemoteException;

Parameters

param

the parameters as a ServiceContext

return

the result as a ServiceContext

Exceptions

RemoteException

if a remote io error occurs.

See Also

getSupportedAttributes()

Retrieves a list of intrinsic attributes suported on this byte store.

207

Interface SorcerFileStore

SORCER interface to a FileStore.

Synopsis

package sorcer.silenus.core;

public interface SorcerFileStore implements Remote,Coordinator {

 // Public Methods

 public ServiceContext createNode(sorcer.base.ServiceContext pc)

 throws java.rmi.RemoteException,

 ServiceUnavailableException;

 public ServiceContext deleteNode(sorcer.base.ServiceContext pc)

 throws ServiceUnavailableException,

 java.io.IOException;

 public ServiceContext expandNode(sorcer.base.ServiceContext context)

 throws java.rmi.RemoteException,

 ServiceUnavailableException;

 public ServiceContext setAttributes(sorcer.base.ServiceContext pc)

 throws java.rmi.RemoteException,

 ServiceUnavailableException;

}

Version

$Revision: 1.3 $ $Date: 2006/10/02 05:44:31 $

See Also

sorcer.silenus.core.FileStore

Since

Nov 15, 2005

Inheritance Path. sorcer.silenus.core.SorcerFileStore

createNode(ServiceContext)

Synopsis: public ServiceContext createNode(sorcer.base.ServiceContext pc)

 throws java.rmi.RemoteException,

 ServiceUnavailableException;

208

Parameters

pc

the parameters as a ServiceContext

return

the result as a ServiceContext

Exceptions

RemoteException

if a remote io error occurs.

ServiceUnavailableException

if not all required services are available.

See Also

createNode(java.util.Map)

create a new node.

deleteNode(ServiceContext)

Synopsis: public ServiceContext deleteNode(sorcer.base.ServiceContext pc)

 throws ServiceUnavailableException,

 java.io.IOException;

Parameters

pc

the parameters as a ServiceContext

return

the result as a ServiceContext

Exceptions

ServiceUnavailableException

if not all required services are available.

IOException

if a io error occurs.

209

See Also

deleteNode(sorcer.silenus.core.Msuid, boolean)

delete a node.

expandNode(ServiceContext)

Synopsis: public ServiceContext expandNode(sorcer.base.ServiceContext conte\

xt)

 throws java.rmi.RemoteException,

 ServiceUnavailableException;

Parameters

context

the parameters as a ServiceContext

return

the result as a ServiceContext

Exceptions

RemoteException

if a remote io error occurs.

ServiceUnavailableException

if not all required services are available.

See Also

expandNode(sorcer.silenus.core.Msuid)

expand a node.

setAttributes(ServiceContext)

Synopsis: public ServiceContext setAttributes(sorcer.base.ServiceContext pc\

)

 throws java.rmi.RemoteException,

 ServiceUnavailableException;

210

Parameters

pc

the parameters as a ServiceContext

return

the result as a ServiceContext

Exceptions

RemoteException

if a remote io error occurs.

ServiceUnavailableException

if not all required services are available.

See Also

setAttributes(sorcer.silenus.core.Msuid, java.util.Map)

Set attributes for a node.

Interface SorcerMetadataStore

SORCER interface to a MetadataStore.

Synopsis

package sorcer.silenus.core;

public interface SorcerMetadataStore implements Remote {

 // Public Methods

 public ServiceContext createNode(sorcer.base.ServiceContext context)

 throws java.rmi.RemoteException;

 public ServiceContext deleteNode(sorcer.base.ServiceContext pc)

 throws java.io.IOException;

 public ServiceContext expandNode(sorcer.base.ServiceContext context)

 throws java.rmi.RemoteException;

 public ServiceContext getTimeVector(sorcer.base.ServiceContext pc)

 throws java.rmi.RemoteException;

 public ServiceContext registerForEvents(sorcer.base.ServiceContext pc)

211

 throws java.rmi.RemoteException,

 net.jini.core.lease.LeaseDeniedException;

 public ServiceContext retrieveChangeLogSince(sorcer.base.ServiceContext p\

c)

 throws java.rmi.RemoteException;

 public ServiceContext retrieveListOfAllActiveNodes(sorcer.base.ServiceCon\

text pc)

 throws java.rmi.RemoteException;

 public ServiceContext updateNode(sorcer.base.ServiceContext context)

 throws java.rmi.RemoteException;

}

Version

$Revision: 1.3 $ $Date: 2006/10/12 01:29:51 $

Since

Nov 15, 2005

Inheritance Path. sorcer.silenus.core.SorcerMetadataStore

createNode(ServiceContext)

Synopsis: public ServiceContext createNode(sorcer.base.ServiceContext conte\

xt)

 throws java.rmi.RemoteException;

Parameters

context

the parameters as a ServiceContext

return

the result as a ServiceContext

Exceptions

RemoteException

if a remote io error occurs.

212

See Also

createNode(java.util.Map,

net.jini.core.transaction.server.ServerTransaction)

create a node.

deleteNode(ServiceContext)

Synopsis: public ServiceContext deleteNode(sorcer.base.ServiceContext pc)

 throws java.io.IOException;

Parameters

pc

the parameters as a ServiceContext

return

the result as a ServiceContext

Exceptions

IOException

if a io error occurs.

See Also

deleteNode(sorcer.silenus.core.Msuid, boolean)

delete a node.

expandNode(ServiceContext)

Synopsis: public ServiceContext expandNode(sorcer.base.ServiceContext conte\

xt)

 throws java.rmi.RemoteException;

Parameters

context

the parameters as a ServiceContext

213

return

the result as a ServiceContext

Exceptions

RemoteException

if a remote io error occurs.

See Also

expandNode(sorcer.silenus.core.Msuid)

expand a node.

getTimeVector(ServiceContext)

Synopsis: public ServiceContext getTimeVector(sorcer.base.ServiceContext pc\

)

 throws java.rmi.RemoteException;

Parameters

pc

the parameters as a ServiceContext

return

the result as a ServiceContext

Exceptions

RemoteException

if a remote io error occurs.

See Also

getTimeVector()

retrieve the current time vector.

registerForEvents(ServiceContext)

Synopsis: public ServiceContext registerForEvents(sorcer.base.ServiceContex\

214

t pc)

 throws java.rmi.RemoteException,

 net.jini.core.lease.LeaseDeniedException;

Parameters

pc

the parameters as a ServiceContext

return

the result as a ServiceContext

Exceptions

RemoteException

if a remote io error occurs.

LeaseDeniedException

if the Lease requested cannot be granted.

register for MDS events.

retrieveChangeLogSince(ServiceContext)

Synopsis: public ServiceContext retrieveChangeLogSince(sorcer.base.ServiceC\

ontext pc)

 throws java.rmi.RemoteException;

Parameters

pc

the parameters as a ServiceContext

return

the result as a ServiceContext

Exceptions

RemoteException

if a remote io error occurs.

215

See Also

retrieveChangeLogSince(java.util.Map)

retrieve a change log.

retrieveListOfAllActiveNodes(ServiceContext)

Synopsis: public ServiceContext retrieveListOfAllActiveNodes(sorcer.base.Se\

rviceContext pc)

 throws java.rmi.RemoteException;

Parameters

pc

the incoming context. Not used.

return

a collection of Msuids

Exceptions

RemoteException

If a remote IO error occurs. *

See Also

retrieveListOfAllActiveNodes()

Retrieves a list of all items stored in this metadata store that are still active.

An active item is an item that has a parent (is not deleted).

updateNode(ServiceContext)

Synopsis: public ServiceContext updateNode(sorcer.base.ServiceContext conte\

xt)

 throws java.rmi.RemoteException;

216

Parameters

context

the parameters as a ServiceContext

return

the result as a ServiceContext

Exceptions

RemoteException

if a remote io error occurs.

See Also

updateNode(sorcer.silenus.core.Msuid,

java.util.Map, java.util.Map,

net.jini.core.transaction.server.ServerTransaction)

modify a node.

Class Time

Describes a single logical time element consisting of local and global time.

Synopsis

package sorcer.silenus.core;

public class Time implements Serializable {

 // Public Constructors

 public Time();

 public Time(long localTime, long globalTime);

 // Public Methods

 public long getGlobal();

 public long getLocal();

 public void incrementGlobal();

 public void incrementLocalAndGlobal();

 public void setGlobal(long newGlobal);

217

 public void setLocal(long newLocal);

 public String toString();

}

Methods inherited from java.lang.Object: clone, equals, finalize,

getClass, hashCode, notify, notifyAll, toString, wait

Version

$Revision: 1.2 $ $Date: 2006/09/02 19:26:36 $

Inheritance Path. java.lang.Object-> sorcer.silenus.core.Time

Time()

Synopsis: public Time();

Creates a new logical time with local and global values of 0.

Time(long, long)

Synopsis: public Time(long localTime, long globalTime);

Parameters

localTime

local time.

globalTime

global time.

Creates a new logical time with the given local and global values.

getGlobal()

Synopsis: public long getGlobal();

218

Parameters

return

the global time component.

Returns the global time component.

getLocal()

Synopsis: public long getLocal();

Parameters

return

the local time component.

Returns the local time component.

incrementGlobal()

Synopsis: public void incrementGlobal();

Increments just the global time component.

incrementLocalAndGlobal()

Synopsis: public void incrementLocalAndGlobal();

Increments both the local and global time component.

setGlobal(long)

Synopsis: public void setGlobal(long newGlobal);

219

Parameters

newGlobal

The global time component to set.

Sets the global time component.

setLocal(long)

Synopsis: public void setLocal(long newLocal);

Parameters

newLocal

The local time component to set.

sets the local time component.

toString()

Synopsis: public String toString();

Constant field values

Package sorcer.silenus.core.*

ALIVE_EVENT 0

ATTR_CHILDREN children

ATTR_CONTENTLASTMODIFIED getlastmodified

ATTR_CREATIONDATE creationdate

ATTR_FILEVERSION fileversion

ATTR_LOCATION location

ATTR_MAX_COPIES maxcopies

220

ATTR_MD5 md5

ATTR_METADATALASTMODIFIED getmetalastmodified

ATTR_MIN_COPIES mincopies

ATTR_NAME displayname

ATTR_OPT_COPIES optcopies

ATTR_ORIGNIATOR originator

ATTR_PARENT parent

ATTR_SHA sha

ATTR_SIZE getcontentlength

ATTR_TARGET target

ATTR_TYPE getcontenttype

ATTR_TYPE_WAS_SET_BY typewassetby

CREATION_FILEDATA_EVENT 101

CREATION_METADATA_EVENT 100

EV_CONTEXT_DURATION Event/Duration

EV_CONTEXT_LEASE Event/Lease

EV_CONTEXT_LISTENER Event/Listener

FS_CONTEXT_ATTRIBUTELIST ByteStore/AttributeList

FS_CONTEXT_ATTRIBUTENAME File/AttributeName

FS_CONTEXT_ATTRIBUTES File/Attributes

FS_CONTEXT_ATTRIBUTEVALUE File/AttributeValue

FS_CONTEXT_CONTENT File/Content

FS_CONTEXT_OLD_ATTRIBUTES File/OldAttributes

FS_CONTEXT_RECURSIVE File/Recursive

FS_CONTEXT_SERVICEID File/ServiceID

221

FS_CONTEXT_SUCCESS File/Success

FS_CONTEXT_TRANSACTION File/Transaction

FS_CONTEXT_UUID File/UUID

HAS_SYNCHED_EVENT 1

MDS_CONTEXT_CHANGELOG Metadata/ChangeLog

MDS_CONTEXT_MSUIDS Metadata/Msuids

MDS_CONTEXT_TIMEVECTOR Metadata/TimeVector

MIMETYPE_DIRECTORY silenus/dir

MIMETYPE_LINK silenus/link

TYPE_SET_CONTENT content

TYPE_SET_EXT extension

TYPE_SET_OLDCONTENT oldcontent

TYPE_SET_USER user

UPDATE_FILEDATA_EVENT 201

UPDATE_METADATA_EVENT 200

222

COLOPHON

This thesis was edited using XMLmind XML Editor Standard Edition 3.4.0, Vi

IMproved 6.2, and Aquamacs Emacs 0.9.9d. It was written using DocBook XML 4.4.

It was translated to xsl-fo using a customized version of the docbook-xsl stylesheets,

snapshot from 10/8/06. The translation was done using the xsltproc from libxml. The

typesetting was done using fop, snapshot from Oct 06. Automation was provided by ant

1.6.5. Formulas where edited with NeoOffice 2.0 Aqua Beta 3. They where converted to

SVG using JEuclid, snapshot from Oct 06. UML diagrams where created using Poseidon

For UML CE 4.2.1. Additional graphics where created using Adobe Illustrator CS2 and

NeoOffice Draw.

	Silenus - A Federated Service-Oriented Approach to Distributed File Systems
	Table of Contents
	Abstract
	Chapter 1. Introduction
	Problem Statement
	Dissertation Outline

	Chapter 2. Background and Literature Review
	Existing model for remote file storage
	Model functionality
	Additional terms
	Shortcomings of the traditional model

	Existing network file storage solutions
	Non-replicated remote file systems
	Network File System (NFS)
	Common Internet File System (CIFS)

	Replicated file systems
	Andrew File System (AFS)
	Coda

	Data grid solutions
	Globus file store
	Avaki

	Other existing file storage solutions
	File system core features

	Architectural qualities for distributed systems
	Transparencies
	Confidentiality
	Symmetric encryption
	Asymmetric encryption
	Encrypting decryption keys
	Existing cryptographic libraries

	Global availability
	WebDAV
	Web-based access to file storage

	Disconnected Operation
	Manageability
	Scalability
	Reliability
	Modifiability
	Platform independence

	Service Orientation
	Eight fallacies of distributed computing
	Generations of Remote Procedure Calls
	Service Oriented Architecture
	Jini Network Technology
	Peer-to-peer networking
	SORCER
	Eight truth of networked computing

	Security in existing file storage solutions
	Privileges
	UNIX (NFS, GlobusFTP)
	Windows (CIFS)
	AFS and Coda
	WebDAV with AC extensions
	Security Table

	Authentication mechanisms
	Client side authentication
	Server side authentication
	Third party authentication

	Privacy mechanisms

	Chapter 3. Requirement Analysis
	File Storage Scenarios
	Small work group
	High-Performance Computing Lab
	Large network
	Home user
	Concurrent Engineers
	Student Computer Lab
	Astronomy
	High-energy physics

	Host types on the network
	Server
	Always up client
	Work time up client
	Laptop
	Mobile client

	Use Case Roles
	File system users
	Administrators
	Optimizer services
	Service provisioners
	Intergrid service providers

	Use Case Design

	Chapter 4. Architecture and Design
	A model for a grid based environment
	SILENUS architectural model
	Components
	Service user interface
	WebDAV adapter
	NFS adapter
	File store
	Metadata store
	Byte store
	Optimizer

	Component Use Cases
	Browse files use case
	Push upload file use case
	Pull upload file use case
	Non-caching download file use case
	Caching download file use case
	Use cases for Service-oriented programs

	File system attributes
	Transparency
	Concurrent File Updates
	File Replication
	Operating system heterogeneity
	Fault tolerance
	Consistency
	Efficiency
	Idempotency
	Security, Access Control, Authentication

	Managing change
	Change in file metadata
	Change in file content

	Metadata store synchronization
	Consistency
	Consistency requirements
	Measure of consistency
	Order of events
	Dual-Clock Time Vectors
	Properties of Dual-Clock Time Vectors
	Performance of Dual-Clock Time Vectors
	Conflict avoidance
	Conflict resolution through virtual duplication
	The switchback problem

	Security
	Proposition
	Trusted third party model
	Decoupling the authentication service
	Privacy
	Roles
	Role Manager Service
	Nomadic RMS

	Model Performance Analysis
	Browse files
	Upload files
	Download files

	Chapter 5. Validation
	Conceptual SILENUS Validation
	Class-level Design
	Package Diagram
	Class Diagrams

	Technical Architecture

	Operational SILENUS Validation
	Deployment Diagram
	Validation in a Connected System
	Validation for the Metacomputer Role
	Validation for a Disconnected System
	Data Integrity
	Validation of Architectural Qualities
	Actual Performance

	Chapter 6. Conclusion
	Bibliography
	Appendix A. Reference
	Package sorcer.silenus.core
	Class Bsuid
	Synopsis
	equals(Object)
	fromString(String)
	hashCode()
	nullBsuid()
	randomBsuid()
	toString()

	Interface ByteStore
	Synopsis
	createByteSequence(Bsuid, ServerTransaction, Map)
	createByteSequence(Bsuid, ServerTransaction, Map, InputFileChannelAccessor)
	getByteSequence(Bsuid)
	getFileAttribute(Bsuid, String)
	getProviderID()
	getSupportedAttributes()

	Class ByteStore.ByteSequenceCreated
	Synopsis
	ByteStore.ByteSequenceCreated(OutputFileChannelAccessor, Bsuid)
	getBsuid()
	getWriteableByteSequence()

	Interface Coordinator
	Synopsis
	downloadFile(ServiceContext)
	registerForEvents(ServiceContext)
	replicateFile(ServiceContext)
	uploadFile(ServiceContext)

	Interface FileStore
	Synopsis
	createNode(Map)
	deleteNode(Msuid, boolean)
	downloadFile(Msuid)
	expandNode(Msuid)
	registerForEvents(RemoteEventListener, long)
	replicateFile(Msuid, ServiceID)
	setAttributes(Msuid, Map)
	uploadFile(Msuid, Map)
	uploadFile(Msuid, Map, InputFileChannelAccessor)

	Interface FileStoreConstants
	Synopsis
	ATTR_CHILDREN
	ATTR_CONTENTLASTMODIFIED
	ATTR_CREATIONDATE
	ATTR_FILEVERSION
	ATTR_LOCATION
	ATTR_MAX_COPIES
	ATTR_MD5
	ATTR_METADATALASTMODIFIED
	ATTR_MIN_COPIES
	ATTR_NAME
	ATTR_OPT_COPIES
	ATTR_ORIGNIATOR
	ATTR_PARENT
	ATTR_SHA
	ATTR_SIZE
	ATTR_TARGET
	ATTR_TYPE
	ATTR_TYPE_WAS_SET_BY
	EV_CONTEXT_DURATION
	EV_CONTEXT_LEASE
	EV_CONTEXT_LISTENER
	FS_CONTEXT_ATTRIBUTELIST
	FS_CONTEXT_ATTRIBUTENAME
	FS_CONTEXT_ATTRIBUTES
	FS_CONTEXT_ATTRIBUTEVALUE
	FS_CONTEXT_CONTENT
	FS_CONTEXT_OLD_ATTRIBUTES
	FS_CONTEXT_RECURSIVE
	FS_CONTEXT_SERVICEID
	FS_CONTEXT_SUCCESS
	FS_CONTEXT_TRANSACTION
	FS_CONTEXT_UUID
	MAP_ATTR_DIGEST
	MDS_CONTEXT_CHANGELOG
	MDS_CONTEXT_MSUIDS
	MDS_CONTEXT_TIMEVECTOR
	MIMETYPE_DIRECTORY
	MIMETYPE_LINK
	TYPE_SET_CONTENT
	TYPE_SET_EXT
	TYPE_SET_OLDCONTENT
	TYPE_SET_USER

	Class FileStoreEvent
	Synopsis
	FileStoreEvent(ServiceID, long, long, Set, Map, Map)
	FileStoreEvent(ServiceID, long, Map)
	ALIVE_EVENT
	CREATION_FILEDATA_EVENT
	CREATION_METADATA_EVENT
	HAS_SYNCHED_EVENT
	UPDATE_FILEDATA_EVENT
	UPDATE_METADATA_EVENT
	getChangedAttrs()
	getSourceItems()
	getTimeVector()

	Interface InputFileChannelAccessor
	Synopsis
	openInputFileChannel()

	Interface MetadataStore
	Synopsis
	createNode(Map, ServerTransaction)
	deleteNode(Msuid, boolean)
	expandNode(Msuid)
	getProviderID()
	getTimeVector()
	registerForEvents(RemoteEventListener, long)
	retrieveChangeLogSince(Map)
	retrieveListOfAllActiveNodes()
	updateNode(Msuid, Map, Map, ServerTransaction)

	Class MetadataStore.MetadataStoreChangeLog
	Synopsis
	MetadataStore.MetadataStoreChangeLog(Map, Map)
	getChangedAttrs()
	getTimeVector()

	Class MetadataStore.NodeCreated
	Synopsis
	MetadataStore.NodeCreated(Msuid, Map)
	getAttributes()
	getMsuid()

	Class Msuid
	Synopsis
	ROOTID
	equals(Object)
	fromString(String)
	hashCode()
	randomMsuid()
	toString()
	withOriginatorID(ServiceID)

	Interface OutputFileChannelAccessor
	Synopsis
	openOutputFileChannel()

	Interface RemoteSilenusAccessor
	Synopsis
	getMetadataStore(ServiceID)

	Exception ServiceUnavailableException
	Synopsis
	ServiceUnavailableException(String)

	Interface SorcerByteStore
	Synopsis
	createByteSequence(ServiceContext)
	getByteSequence(ServiceContext)
	getFileAttribute(ServiceContext)
	getProviderID()
	getSupportedAttributes(ServiceContext)

	Interface SorcerFileStore
	Synopsis
	createNode(ServiceContext)
	deleteNode(ServiceContext)
	expandNode(ServiceContext)
	setAttributes(ServiceContext)

	Interface SorcerMetadataStore
	Synopsis
	createNode(ServiceContext)
	deleteNode(ServiceContext)
	expandNode(ServiceContext)
	getTimeVector(ServiceContext)
	registerForEvents(ServiceContext)
	retrieveChangeLogSince(ServiceContext)
	retrieveListOfAllActiveNodes(ServiceContext)
	updateNode(ServiceContext)

	Class Time
	Synopsis
	Time()
	Time(long, long)
	getGlobal()
	getLocal()
	incrementGlobal()
	incrementLocalAndGlobal()
	setGlobal(long)
	setLocal(long)
	toString()

	Constant field values
	Package sorcer.silenus.core.*

