Thesis proposal: Enhancing the distributed file
storage system for SORCER
SILENUS - Sorcer Integrated Local Enhanced New

User’s Storage

Max Berger

January 28, 2006

Based on the existing solution in Sorcer and Globus, and my experience this
semester in understanding and working with the Sorcer Framework, I would
like to work on a new file storage system for the Sorcer environment as a
thesis.

Requirements elicitation

Problem statement

The Sorcer environment currently provides a file storage system that can
be used from Sorcer clients. This file storage system, however has some
drawbacks.

The current filesystem in Sorcer is not very distributed. Although it allows
access to resources from different clients, these have to have physical access
to the file system. We want a new, robust file system that is accessible from
within Sorcer, easy to set up, secure to failures, fully distributed, . ...

Timeline

In a sense, this project has already started since I have done some analysis of
existing solutions. This project should start in September 2004 and should
be completed by December 2006.



Functional requirements

Upload files from classical and Sorcer applications
Download files from classical and Sorcer applications
Modify files online from classical and Sorcer applications

Selecting files for hoarding from a special application

Nonfunctional requirements

Decentralization

Each node should be able to work on its own.

There should be no other connection requirements other than being
able to connect to other Sorcer Services.

Transparencies

Location transparent: it shouldn’t matter where the file is stored

Access transparent: All elements in the filestore should be accessible
from classical, non-Sorcer programs.

Replication transparent: There should be no difference on what repli-
cation the user works

Failure transparent: The system should still work even if a significant
number of hosts is down.

Read concurrency transparent: Multiple users should be able to read
the same file at the same time

Write concurrency transparent: Multiple users should be able to write
to same file at the same time

Migration transparent: The system or the user should be able to mi-
grate the physical presence of a file without interrupting any work.



Security

e User Security: There should a secure way to identify users, and to
make sure that no-one can read/write files without permissions, not
even the superuser on a system.

e System Security: Each system that wants to become part of a partic-
ular filestore must somehow identify itself so that no systems can just
come up and steal data.

Compability

e The applications and its parts should be implemented in java utilizing
only the Sorcer framework.

e All programs written for the old filestore interface should work without

modification.

User friendliness

e The application should be easy to install
e The application should require as little actual user interaction as pos-

sible.

Automaticity
The software should be itself

e keep important files on multiple machines.

e migrate files to the machines where they are mostly used.

Completeness of implementation

Each of the Requirements will be given a priority. The implementation
should focus on the most important features first, then go to the lesser
important features. If the time runs out it should be a complete working
solution.



