
A dual-time vector clock based synchronization
mechanism for key-value data in the SILENUS file

system
Max Berger
MTA KFKI

Michael Sobolewski
Texas Tech University

Abstract— The SILENUS federated file system was developed
by the SORCER research group at Texas Tech University. The
federated file system with its dynamic nature does not require
any configuration by the end users and system administrators.

The SILENUS file system provides support for disconnected
operation. To support disconnected operation a relevant synchro-
nization mechanism is needed. This mechanism must detect and
order events properly. It must detect also possible conflicts and
resolve these in a consistent manner.

This paper describes the new synchronization mechanism
needed for providing data consistency. It introduces dual-time
vector clocks to order events and detect conflicts. A conflict
resolution algorithm is defined that does not require user in-
teractions. It introduces the switchback problem and how it can
be avoided. The synchronization mechanisms presented in this
paper can be adapted to synchronize any key-value based data
in any distributed system.

I. I NTRODUCTION

Under the sponsorship of the National Institute for Stan-
dards and Technology (NIST) the Federated Intelligent Prod-
uct Environment (FIPER) ([1], [2], [3]) was developed (1999-
2003) as one of the first service-to-service (S2S) metacom-
puting environments. The Service-Oriented Computing Envi-
ronment (SORCER) ([4], [5]) builds on the top of FIPER
to introduce a federated computing environment with the
basic service infrastructure to support service object oriented
metaprogramming. [6] It provides an integrated solution for
grid computing.

SORCER provides a centralized File Store Service
(FSS) [7]. It supports filtering out information from remote
files, thus reducing the amount of data transfers between
providers. However, it is usually provided as a single service in
the network and as such not a true S2S application. To improve
reliability and performance replication services [8] where
developed for SORCER. These services allow the replication
of file data on different nodes in the computing grid.

SILENUS [9] [10] [11] completes the step from a traditional
client-server application to a network-centric application. In-
stead of storing data on one particular node or in a particular
service, it is the federation of several small distributed services
that provide the file system. SILENUS provides a true data
grid solution to complement a SORCER computing grid.
Unlike existing file store solutions, the SILENUS system is
completely network-centric. It allows access to files in the file
system even when a node is disconnected from the rest of the

network, but still keeps consistent data. This paper discusses
the synchronization mechanisms needed to provide required
data consistency.

This paper is organized as follows: Section I introduces
the SILENUS file system and its main services and gives an
overview over the data to be synchronized. Section II refreshes
on the context of time-vector clocks. Section III introduces a
new dual time vector clock algorithm. Section IV describes our
approach to conflict resolution. The findings are summarized
in section V.

A. The SILENUS File System

The SILENUS file system provides a grid data storage so-
lution using loosely coupled replicated services. Each service
is run independently on any number of machines. Services
can discover themselves dynamically. These services federate
together to provide one storage system to the user. Two of
these services are byte store and metadata store. We assume
that metadata about files is relatively small, with respect to
large content of files.

A byte store service stores the actual file data. In the basic
hardware analogy this would be the actual hard drive. Files
in a byte store are identified uniquely by the ID of the byte
store and an entry ID in the byte store. These ID numbers
never change. This makes the file storage independent from
file metadata such as the file name. The byte store services
provide nothing but support for file storage. The advantage is
that this service can be then optimized for performance.

A metadata store provides attributes for the files stored in
a file system. By analogy to a traditional storage system a
metadata store can be considered itself as the file system.
The metadata information creates the well-known hierarchi-
cal structure. Files in the metadata store are identified by
universally unique identifiers (Uuid). The metadata provides
mapping from and to file names.

Metadata stores are synchronized while connected. All
metadata stores contain the same information. Should a meta-
data store be disconnected while its information changes, it
will be resynchronized when it discovers the other operational
metadata stores after the reconnection. This paper describes
the synchronization mechanism.

Other notable services are the SILENUS facade service and
the legacy adapters. The SILENUS facade service provides an

SILENUS

WebDAV
Adapter

Silenus
Facade

Byte
Replicator

JXTA
Adapter

NFS
Adapter

Transaction
Manager

Byte
Store

Metadata
Store

Human
Interface

Gateway Services

Data Services

WebDAV
Adapter

Management Services

Mobile
Adapter

SILENUS

WebDAV
Adapter

Silenus
Facade

Byte
Replicator

JXTA
Adapter

NFS
Adapter

Transaction
Manager

Byte
Store

Metadata
Store

Human
Interface

Gateway Services

Data Services

WebDAV
Adapter

Management Services

Mobile
Adapter

Fig. 1. SILENUS architecture.

entry point into the SILENUS system. Instead of accessing
the metadata stores and byte stores separately, a requestor
application can contact a facade service, which will setup the
S2S internal communication via smart proxying. To provide
scalability, there may be any number of facade services in the
network. The legacy adapters provide access to the SILENUS
file system through well-defined existing file system protocols,
such as NFS or WebDAV. The full SILENUS architecture is
depicted in Figure 1.

While traditional file systems have the luxury of using a
locking system to prevent concurrent access from occurring,
the SILENUS file system can not employ locks. When a lock is
requested, the information must be sent to all nodes, therefore
requiring all participating nodes being always available and
reachable. One of the main properties the SILENUS system,
however, is disconnected operation: Users are free to modify
files no matter if they are connected to the main system or
not. Instead of preventing concurrent modifications, the system
expects them and resolves them with the synchronization
mechanism presented in this paper.

B. Synchronization requirements

As stated in the description of the metadata stores, all meta-
data stores should contain the same information. Whenever a
change event occurs, the information is sent to all connected
nodes, which can then update their own state. However, as
the system is supposed to support disconnections, not all
metadata stores may be available for updates when a change
occurs. In this case, the change information cannot be sent
immediately to these disconnected nodes. Therefore, a node
must be brought up-to-date with the current information when
it is reconnected with the rest of the system. A synchronization
mechanism must:

• detect what needs to be synchronized,
• merge data on all nodes, and
• resolve synchronization conflicts.

C. Metadata contents

To describe which data needs to be synchronized, it must
first be looked at what type of data is stored in the metadata

Key Value Since
Uuid 1234-5678
Name test.txt 2
Mime-Type text/plain 1
Parent 2345-6789 1
Last changed on 3456-7890 2

Fig. 2. Example of Metadata in SILENUS Metadata Store. The file “test.txt”
is a plain-text file. It has the internal Uuid of “1234-5678”. The Uuid of
its parent directory is “2345-6789”. The metadata was last changed on the
metadata store with the id “3456-7890” at the global time “2”.

stores, as synchronization mechanisms for different type of
data will be different.

The file metadata is stored as key-value pairs. Figure 2
gives an example of file metadata structure in SILENUS. Thus,
we assume that the synchronized data is represented as key-
value pairs. Each pair contains additional information at which
time it was last changed. Older information is kept as well to
provide versioning.

Every SILENUS metadata store keeps two counters called
local time counter and global time counter. The global time
counter is incremented whenever any metadata change occurs.
This change may have originated locally, or on a remote
metadata store. This provides a mechanism to trace all the
modifications on this particular metadata store. The global
counter therefore counts every change event in the whole file
system. Whenever an event occurs that originated at this local
metadata store, both the local and the global time counter are
incremented. The local time counter therefore counts only the
events that occurred at this particular metadata store.

To support synchronization, the global time counter of the
last change and the information where the last change occurred
is stored along with the file metadata. The global time of
the last change is needed to recreate change-log information
while the local time counters are used for conflict resolution.
It is assumed that only the attributes with a time-stamp larger
than a given time-stamp have changed. The last-changed-on
information is stored to solve the switchback problem which
will be shown later in this paper.

II. T IME VECTORCLOCKS

In a distributed system, a notion of time is mandatory to
describe the current state of the overall system. To perform
synchronization, it is essential to provide a notion of ordered
time that provides a ”happened before” relationship. A notion
of time is needed to define an order of events, create a change
log of events, and decide which events to apply. Time must
fulfill the following requirements:

• every evente is annotated with a timete,
• t must be strictly monotonically increasing,
• te1 < te2 iff e1 occurred beforee2,
• te1 > te2 iff e1 occurred aftere2,
• te1 = te2 iff e1 and e2 describe the same event on the

same node,
• te1 ||te2 (parallel) iff e1 ande2 occurred at the same time

on different nodes.

The native approach for time is to use the real time clock
present in most machines. However, it does not provide a good
enough notion of time. First, the time may not be accurate. To
be useful for synchronization it would have to match exactly
on all nodes involved. Thus, it does not provide an adequate
notion of events occurring in parallel.

One possibility to provide time is to have a global clock.
Every node would get the time from the global clock. It would
then be easy to find out which events occurred in the past and
which events are newer and can safely update older events.
Unfortunately, this would require all nodes to keep the exact
same time and reconnect to the global clock often enough.
This assumption can be made for a reliable local network, but
it is impossible to hold it up for disconnected nodes.

Instead of using a global absolute clock a logical clock is
used. A logical clock is a monotonically incrementing software
counter, starting at zero. It is required that there is at least one
clock tick between two events. If all events are timestamped,
it becomes possible to reconstruct the order in which events
occurred. This works very well for a single node, but shows
limitations when applied to a distributed system. [12]

To order events in a distributed system, a timestamp on
the local process is not sufficient. Every event needs to be
timestamped with the global time from every node. This can
be implemented with vector clock timestamps. A vector clock
contains the logical clock for every connected component. [13]

Unfortunately, a system with fully working vector clocks
would need a reliable observer. In a truly distributed system
this is impossible. Instead, the vector time is approximated
with the best knowledge of a system. In a vector clock system,
each node keeps the knowledge of its own logical clock
and the logical clocks of all its peers. This clock vector is
appended to all network messages. Other nodes can then use
this information to update their own vector clock and to check
if the received message was current. Vector clocks can be used
to provide total ordering of events in a distributed system.

The vector clock approximation algorithm is defined as
follows:

• If a change event occurs locally, increment the own clock.
• If a change event is received from another node, set

each clock to the maximum of the clock received and
increment your own clock by one.

Using this algorithm we can now compare vector clocks
and define an absolute ordering of events. We will compare
the received time vectorVr with the local time vectorVl.
n, m ∈ [1..|V |] are used as counter for the elements ofV .

• If Vr 6= Vl ∧ ∀n : Vr(n) ≥ Vl(n) then the received
message is newer than the local state. Receive all change
events from the remote node and apply them accordingly.

• The caseVr 6= Vl ∧ ∀n : Vr(n) ≤ Vl(n) is not possible.
A metadata store will increment its own clock before
sending out events, therefore at least the clock component
Vr(sender) must be greater than the component stored
at the receiver side.

• If ∃m,n : Vr(n) > Vl(n) ∧ Vr(m) < Vl(m) then
some events have happened in parallel. In this case, the

0
0
0() ()1

0
0

0
0
0()
0
0
0()

()1
1
0

()1
0
1

()1
2
0

Fig. 3. Vector clock approximation problem. In this particular example,
a change event is generated on the first node. It increments its own clock
and sends information about the change event to all other nodes. These
nodes update to the change and increment their own time vector. Another
change event occurs on the second node. The node increments its time vector
accordingly and notifies about the change all other node. The first node will
just apply the changes. The third node, however, assumes that a conflict
occurred as its logical clock time-stamp is greater than its time-stamp received.

receiving metadata store needs to retrieve all events from
the sending metadata store and merge the contents. A
potential conflict has occurred that must be resolved.

The problem with this vector time clock approximation
algorithm is that it does not keep accurate track of the actual
changes, but rather of the messages received. According to
the algorithm the own logical clock is incremented every
time a change event is received. If this time vector is then
sent to a third party, the party could not distinguish if the
time was increased because a new local event occurred or
because another remote node indicated a change. Figure 3
gives a relevant example. We therefore needed to enhance
the existing vector-clock algorithm in order to manage proper
synchronization of changes in distributed nodes.

III. D UAL TIME VECTORCLOCKS

To solve the conflict detection problem with single-time
vector clocks we use a novel dual time system introduced
for the metadata stores to keep track of the changes in the
key-value attributes. A local timer counts only events that
originated locally, whereas the global timer counts both local
and external change events. The time vector now contains two
pieces of information for all nodes: timing of local and external
changes.

Using only the local time counters in the time vector clock
algorithm seems to solve the conflict detection problem. If the
original time vector clock algorithm is used with local time
counters instead of global time counters, fewer false conflicts
are detected. A potential conflict notification only occurs,
when there where actual changes originating on different
nodes. However, the global time counter is crucial for correct
ordering of events. Avoiding the global time counter will
mark most events as parallel, although they may have actually
occurred in a specific order. To resolve this problem, both the

()1/1
1/2
0/0()1/1

0/1
0/0

()1/1
0/0
0/1()0/0

0/0
0/0

()0/0
0/0
0/0 ()1/1

0/0
0/0

()0/0
0/0
0/0

Fig. 4. Dual vectors with local and global counter. A change event is
generated on the first node. It increments both counters and sends information
about the event to all other nodes. These nodes apply the change and
increment their own global counter. Another change event occurs on the
second node. The node increments both counters and notifies all other nodes.
Both other nodes will see this new event as newer and apply corresponding
non-conflicting changes.

local and global time counters are used in the time vector. The
local time counter component is used for conflict detection,
while the global time counter component is used to order the
change events.

When comparing the dual-time vector clocks, only the local
components of the time vector are compared for conflict
detection. We will denote the time vector for the local clocks
asV l. The following for possibilities can be considered:

• If V lr 6= V ll ∧ ∀n : V lr(n) ≥ V ll(n) then the received
message is newer than the local knowledge. All changes
can be safely applied and the time vectors merged by
setting each component, both local and global, to the
maximum of the current value and the received value.

• If V lr 6= V ll ∧ ∀n : V lr(n) ≤ V ll(n) then the received
message is older than the local knowledge. It can be
safely ignored, the changes have been applied earlier. The
time vectors are still merged, some global counters may
be different. The originating node can be notified that it
should update.

• If ∀n : V lr(n) = V ll(n) both nodes have the same
information. The time vectors are still merged, some
global counters may be different.

• ∃m,n : V lr(n) > V ll(n) ∧ V lr(m) < V ll(m) then
some event have happened in parallel. A potential conflict
occurred that must be resolved.

This mechanism leads to a lower rate of false conflict
detection than a single vector clock. Figure 4 illustrates the
same sequence of change events as presented for a single
vector clock in Figure 3. Since no actual conflict occurred,
none is really detected.

A. Properties of the Dual Time Vector Clock algorithm

Since the dual-clock time vectors are a new proposed
solution, we have to prove its properties. The requirements
for time given in Section II were defined as follows:

• every evente is annotated with a timete,
• t must be strictly monotonically increasing,
• te1 < te2 iff e1 occurred beforee2,
• te1 > te2 iff e1 occurred aftere2,
• te1 = te2 iff e1 and e2 describe the same event on the

same node,
• te1 ||te2 (parallel) iff e1 ande2 occurred at the same time

on different nodes.

Each of these required properties is now investigated. For
each property, local events and remote events have to be
investigated. The dual-clock time vector can without loss of
generality be defined as follows:

V =


l1/g1

...
lself/gself

...
ln/gn


To prove that t is strictly monotonically increasing it must

be shown thatVnew > Vold. The proposed algorithm states that
in the case of a local event both the local and global clock of
the current system have to be increased, therefore:

Vnew = Vold +


...

1/1
...



=


l1/g1

...
lself/gself

...
ln/gn

 +


...

1/1

...



=


l1/g1

...
lself + 1/gself + 1

...
ln/gn


We can immediately see that∀n : V lnew >= V lold and

Vnew 6= Vold. Therefore the requirementVnew > Vold is
satisfied.

The second case is the case of received remote events. There
are four subcases:

1) Vr = Vl. In this case, no event has happened;Vl does
not have to increase.

2) Vr < Vl. In this case, the received event is older;Vl

does not have to increase.
3) Vr > Vl. In this case, the received event is newer;Vl

must increase.
4) Vr||Vl. In this case, events have happened in parallel;Vl

must increase.

In the subcases 3 and 4Vnew is defined as:

Vnew = max(Vold, Vr)

=



max(lold,1, lr,1)/max(gold,1, gr,1)
...

max(lold,self , lr,self)/max(gold,self , gr,self)
...

max(lold,r, lr,r)/max(gold,r, gr,r)
...

max(lold,n, lr,n)/max(gold,n, gr,n)


The use of the max function satisfies the condition∀n :

V lnew >= V lold. Vnew 6= Vold follows directly from the
subcase selection, wouldV new = Vold then sub case 1
would have been selected. This proves that the dual vector
clock algorithm satisfies the requirement: t must be strictly
monotonically increasing for every event.

The next property that must be proven is thatte1 < te2 iff
e1 happened before e2. This property is a direct result from t
being strictly monotonically increasing for every event.

The propertieste1 > te2 iff e1 happened after e2 and
te1 = te2 iff e1 and e2 are the same event on the same
machine also follow directly from the property that t is strictly
monotonically increasing.

The propertyte1||te2 iff e1 and e2 happen at the same time
on different machines can be proven as follows: Assuming two
nodes N1 and N2 have the same vectorVstart at some point:

Vstart =



l1/g1

...
lN1/gN1

...
lN2/gN2

...
ln/gn


After two events happened in parallel on both machines, the

time vectors for nodes N1 and N2 will be:

VN1 =



l1/g1

...
lN1 + 1/gN1 + 1

...
lN2/gN2

...
ln/gn



VN2 =



l1/g1

...
lN1/gN1

...
lN2 + 1/gN2 + 1

...
ln/gn


When comparing the two time vectors, we find that

VN1,l(N1) > VN2,l(N1) and VN1,l(N2) < V N2, l(N2).
Given the definition of parallelism these vectors are correctly
detected asVN1||VN2.

The other direction is to provide that ifVN1||VN2 then there
must be events on more than one host. This can be proven by
looking at the algorithm: The only time the own local clock
increases is if an event happened locally. Therefore, if more
than one local clock has changed, there must be events that
happened on more than one host.

The dual-clock time vector algorithm still supports all the
properties that where required originally. It can therefore
provide a reliable order of events for a synchronization mech-
anism.

IV. CONFLICT RESOLUTION

We now have a sophisticated mechanism to detect changes
and potential conflicts. The next step to data synchronization
is to use this information to resolve the actual conflicts. But
first, it must be determined if the potential conflict is an actual
one.

Even if there is a potential conflict, in most cases will not
be an actual one. The ordering of events using the dual vector
clocks only gives the indication that two or more events have
happened at the same time.

These events must be related to each other in order to create
an actual conflict. In the case of SILENUS metadata, events are
only related if they apply to the same metadata node. Change
events applied to different nodes can therefore be updated
without any problems. Some events make no sense together,
such as deletion of a directory and creation of a new file in
the same directory, but they do not create conflicts.

The relation can even be specified more exactly on a field
basis. If two different fields on the same node have changed,
these changes can be merged without conflicts. For example,
if a file is renamed on one node, and modified on another,
both changes are not in conflict with each other.

The last-changed-on metadata time-stamp should never cre-
ate any conflicts. This data is updated every time any data on
any node changes. As such, it would always lead to a conflict.
However, this data is only used for conflict resolution and is
ignored for conflict detection.

If none of these criteria match, then an actual conflict has
occurred. To solve a conflict, the SILENUS system uses virtual
duplication. Virtual duplication addresses the issue of local
consistency and requires no direct user interaction.

start time
MS 01 contains: bla.txt version 1
MS 02 contains: bla.txt version 1

metadata stores get disconnected
file gets modified on store 01
file gets modified on store 02

MS 01 contains: bla.txt version 2/01
MS 02 contains: bla.txt version 2/02

stores get reconnected
MS 01 will show: bla.01.txt version 2/01

bla.02.txt version 2/02
bla.txt → bla.01.txt

MS 02 will show: bla.01.txt version 2/01
bla.02.txt version 2/02
bla.txt → bla.02.txt

Fig. 5. Example of virtual duplication. The Filebla.txt gets modified on
two different meta stores (MS), or two different sets of meta stores.

An automatic conflict resolver should require no user in-
teraction. If a file is modified in multiple places, the system
should be able to provide a conflict handling strategy. This
strategy should not require user interaction. In most environ-
ments it is impossible or impracticable to ask the user which
conflicting option to choose. Conflict resolution must therefore
be handled automatically.

One issue with automatic conflict management is that it
can break local consistency. As an example, assume a change
may be made to a local metadata store. This metadata store is
then synchronized with another metadata store where a conflict
occurs. The users on both metadata stores expect their own
action to take precedence over the conflicting action from the
other user.

The Coda distributed file system introduced virtual dupli-
cations. [14] They are used in the Coda file system to resolve
conflicts between two versions of the same file with its updated
file content. In SILENUS this method is not only applied to file
content, but it is also applied to all changes in file metadata.
Changing the file content adds a new version and therefore
triggers a change in file metadata. But other changes in file
metadata are also possible and they may need to be resolved.

Virtual duplication provides a file under three different
names: A name with the appendedversion to the files
depending on which store it was modified on. It will also
provide the file under its original name as a soft link pointing
to the original version created on this particular node. Figure 5
illustrates a related example.

One hardship with independent synchronization is a switch-
back problem. Figure 6 gives a relevant illustration. The
switchback problem occurs if two distinct stores contain the
same information and then synchronize and merge at the
same time with two other stores containing another set of
information. If they resolve the conflict differently then they
again create different versions, which lead to a follow-up
conflict.

This problem can be solved if both metadata stores resolve a

01 02

03 04

01 02

03 04

01 02

03 04

A

A

B

B

C C

D D

E

E

F

F

Fig. 6. The switchback problem. Stores 01 and 03 have information A. Stores
02 and Store 04 have information B. Then these stores get disconnected.
Store 01 connects with store 02, detects a conflict and resolves it by creating
information C. Store 03 connects with store 04, detects a conflict and
resolves it by creating information D. The stores get disconnected again and
reconnected in the original configuration. Now store 01 and store 03 resolve
their conflict by creating information E, where as stores 02 and 04 resolve
their conflict by creating information F. And the same process starts over. . .

01 02

03 04

01 02

03 04

01 02

03 04

A

A

B

B

C C

C C

C

C

C

C

Fig. 7. Solving the switchback problem. Stores 01 and 03 have information A.
Store 02 and Store 04 have information B. Then these stores get disconnected.
Store 01 connects with store 02, detects a conflict and resolves it by creating
information C. Store 03 connects with store 04, detects a conflict and resolves
it by creating the exact same information C. Now the stores can disconnect
and reconnect in any configuration without a conflict.

conflict in the exact same manner and arrive at the exact same
solution. This requires two conditions to be satisfied when
using virtual duplication: The file names must be exactly the
same and the file generated Uuids must be exactly the same.
Figure 7 shows an example of the solved switchback problem.

The first issue is that the names of the files must be exactly
the same. In the algorithm outlined above, the id of the
synchronizing metadata store is used as an extra file name.
This is insufficient, as it leads to different file names depending
on the nodes involved in the synchronization. Instead, the id
of the node that has last changed the metadata is used. This
information is stored in the last-changed-on attribute.

Generating the same new ids is the second issue. To provide
support for this, the original id is extended with the last-
changed-on information. However the link is kept to the
original id. The two conflicting versions will get the original
id with the last-changed-on information appended. An id may
have multiple last-changed-on informations appended, since
there may again be a conflict in one of those files. Figure 8
shows an example of the complete conflict resolution process.

V. CONCLUSION

The algorithm utilizing dual-time vector clocks presented in
the paper can be applied to synchronizing any replicated key-
value based data. It supports disconnected and concurrent data
modification. The algorithm has been successfully deployed
in the SILENUS federated file system and it is the core
functionality required to satisfy disconnected operations in the
SORCER federated meta computing environment.

Merging and managing changes of key-value based data on
disconnected nodes without user interaction is a never-ending
topic. There are many applications for this algorithm. The

presented federated data-grid storage is just one of them. Other
applications include synchronizing personal information, such
as address books and calendars with mobile devices. [15]

The algorithm proposed in this paper satisfies all require-
ments of the SILENUS data grid system. It provides a stable,
autonomic conflict resolution mechanism that is only applied
if necessary. It has complete and consistent support for dy-
namically federating services and changing overlay networks.

REFERENCES

[1] M. Sobolewski, “Federated P2P services in CE environments,” in
Advances in Concurrent Engineering. A.A. Balkema Publishers, 2002,
pp. 13–22.

[2] ——, “FIPER: The federated S2S environment,” inJavaOne, Sun’s
2002 Worldwide Java Developer Conference, San Francisco, 2002,
http://sorcer.cs.ttu.edu/publications/papers/2420.pdf.

[3] R. Kolonay and M. Sobolewski, “Grid interactive service-oriented pro-
gramming environment,” inConcurrent Engineering: The Worldwide
Engineering Grid. Tsinghua Press and Springer Verlag, 2004, pp. 97–
102.

[4] S. Soorianarayanan and M. Sobolewski, “Monitoring federated services
in CE,” in Concurrent Engineering: The Worldwide Engineering Grid.
Tsinghua Press and Springer Verlag, 2004, pp. 89–95.

[5] SORCER, “Laboratory for Service-Oriented Computing Environment,”
Mar. 2007, http://sorcer.cs.ttu.edu/.

[6] M. Sobolewski, “Metacomputing with Federated Method Invocation,”
SORCER Technical Report SL-TR-11, July 2007. [Online]. Available:
http://sorcer.cs.ttu.edu/publications/papers/FMI.pdf

[7] M. Sobolewski, S. Soorianarayanan, and R.-K. Malladi-Venkata,
“Service-oriented file sharing,” inCIIT conference (Communications,
Internet and Information Technology). Scottsdale, AZ: ACTA Press,
Nov. 2003, pp. 633–639.

[8] V. Khurana, M. Berger, and M. Sobolewski, “A federated grid en-
vironment with replication services,” inNext Generation Concurrent
Engineering, ISPE. Omnipress, 2005.

[9] M. Berger, “SILENUS – a service oriented approach to distributed
file systems,” PhD Dissertation, Texas Tech University, Department of
Computer Science, Dec. 2006.

[10] M. Berger and M. Sobolewski, “SILENUS – a federated service-oriented
approach to distributed file systems,” inNext Generation Concurrent
Engineering, ISPE. Omnipress, 2005.

[11] ——, “Lessons learned from the SILENUS federated file system,” in
Complex Systems Concurrent Engineering, G. Loureiro and R. Curran,
Eds., ISPE. Springer, 2007, pp. 431–440.

[12] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,”Commun. ACM, vol. 21, no. 7, pp. 558–565, 1978.

[13] F. Mattern, “Virtual time and global states of distributed systems,” in
Parallel and Distributed Algorithms: proceedings of the International
Workshop on Parallel and Distributed Algorithms, 1989.

[14] M. Satyanarayanan, “Coda: A highly available file sys-
tem for a distributed workstation environment,” July 15
1999. [Online]. Available: http://citeseer.ist.psu.edu/239688.html;
http://www.cs.cmu.edu/afs/cs/project/coda/Web/docdir/wwos2.pdf

[15] M. Berger, “Integrated PIM data management with SyncML,” Master’s
thesis, Technische Universtät München, Munich, Germany, June 2001.
[Online]. Available: http://max.berger.name/research/syncml/

Key Value Since
Uuid 1234
Name test.txt 2
Mime-Type text/plain 1
Last changed on 5678 2
Content-Version 1 2
Location 2345: 6789 2

(a) Original Data

Key Value Since
Uuid 1234
Name test.txt 2
Mime-Type text/plain 1
Last changed on 5678 2
Content-Version 2 3
Location 2345: 7890 3

(b) Change on MDS 5678

Key Value Since
Uuid 1234
Name test.txt 2
Mime-Type text/plain 1
Last changed on 7890 2
Content-Version 2 3
Location 3456: 90AB 3

(c) Change on MDS 7890

Key Value S
Uuid 1234.5678
Name test.5678.txt 4
Mime-Type text/plain 4
Last changed 5678 4
Cont-Version 2 4
Location 2345: 7890 4

(d) Merged data from 5678

Key Value S
Uuid 1234
Name test.txt 2
Mime-Type link 4
Last changed 5678 4
Link-To 1234.5678 4

(e) Merged link

Key Value S
Uuid 1234.7890
Name test.7890.txt 4
Mime-Type text/plain 4
Last changed 5678 4
Cont-Version 2 4
Location 3456: 90AB 4

(f) Merged data from 7890

Fig. 8. Complete conflict resolution process. 8(a) shows the original file with the Uuid 1234. 8(b) and 8(c) show the same file, modified on two different
metadata stores. A conflict occurs and is resolved by MDS 5678. It will now show both versions (8(d), 8(f)) and a link to its original version (8(e)).

