
Lessons Learned from the SILENUS Federated
File System

Max Berger1 and Michael Sobolewski1

Texas Tech University max@berger.name sobol@cs.ttu.edu

Summary. The major objective of the Service Oriented Computing Environment
(SORCER) is to form dynamic federations of network services that provide engi-
neering data, applications and tools on an engineering grid with exertion-oriented
programming. To meet the requirements of these services in terms of data shar-
ing and managing in the form of data files, a corresponding federated file system,
SILENUS, was developed. This system fits the SORCER philosophy of interactive
exertion-oriented programming, where users create service-oriented programs and
can access data files in the same way they use their local file system. This paper
gives a brief overview of SORCER and then the SILENUS methodology is described.
Next, we discuss SILENUS gateway, management, and data services with related
disconnected and data synchronization mechanisms. We also discuss experimental
results of the implemented system.

1 Introduction

In an integrated environment, all entities must first be connected, and they
then must work cooperatively. Services that support concurrency through
communication, team coordination, information sharing, and integration in
an interactive and formerly serial product development process provide the
foundation for any CE environment. Product developers need a CE program-
ming and execution environment in which they can build programs from other
developed programs, built-in tools, and persisted data describing how to per-
form complex design processes. Like any other services in the environment, a
CE distributed file system can be structured as a collection of collaborating
distributed services enabling for robust, secure, and shared vast repository of
engineering enterprise data.

Several systems exist to access data that is spread across multiple hosts.
However, except for a few exceptions, all of them require manual management
and knowledge of the exact data location. Very few offer features like local
caching or data replication.



2 Max Berger and Michael Sobolewski

Under the sponsorship of the National Institute for Standards and Technol-
ogy (NIST) the Federated Intelligent Product Environment (FIPER) [12][13][11]
was developed (1999-2003) as one of the first service-to-service (S2S) CE com-
puting environments. The Service-Oriented Computing Environment (SOR-
CER) ([15], [14], [16]) builds on the top of FIPER to drastically reduce design
cycle time, and time-to-market by intelligently integrating elements of the de-
sign process by providing true concurrency between design and manufacturing.
The systematic and agile integration of humans with the tools, resources, and
information assets of an organization is fundamental to concurrent engineering
(CE).

Two years ago we introduced a novel approach to share data across mul-
tiple service providers using dedicated storage, metainformation, replication,
and optimization services in the SORCER/SILENUS environment [1], a ser-
vice oriented approach to distributed file systems. The access via WebDAV
adds to the idea of heterogeneous interactive programming, where the user
through its diverse operating system interfaces can manage shared data files
and folders. The same data can be accessed and updated by different ser-
vice providers and authorized users can monitor data processing activities
executed by the service providers involved with co-operating WebDAV user
agents. Like any other services in the P2P environment, the SILENUS services
are also peers in the SORCER environment.

The paper is organized as follows. Section 2 provides a brief descrip-
tion of the dynamic service object oriented computing; section 3 describes
the SILENUS methodology; section 4 presents disconnected operation and
data synchronization; section 5 describes experimental results using the NFS
adapter; section 6 provides concluding remarks.

2 Service Oriented Computing

Instead of thinking of a service offered by a particular host, the current
paradigm shift is towards services in the network – the metacomputer is the
grid of service providers . In classical distributed applications, it is necessary
to know exactly on which host a particular service is exposed. In most dis-
tributed file systems, for example, it is necessary to know the name of a host
that a particular file is stored on. In a service-oriented (SO) environment a
service provider registers itself with a service registry. The service registry
facilitates lookup of services. Once a service is found a service requester binds
to the service provider and then can invoke its services. Service requesters
discover a registry and then lookup a needed service. On the other hand, a
provider can discover the registry and publish its own service, as depicted in
Figure 1.

In the service protocol-oriented architecture (SPOA), a communication
protocol is fixed beforehand and can not be changed. Based on that protocol
and a service description obtained from the service registry, the requester can



Lessons Learned from the SILENUS Federated File System 3

Fig. 1. Service-Oriented Architecture

bind to the service provider – create a proxy used for remote communication
over the fixed protocol. In SPOA a service is usually identified by a name
and/or some attributes. If a service provider registers by name, the requesters
have to know the name of the service beforehand.

In the service object-oriented architecture (SOOA), a service is identified
by a service type (interface) rather than its implementation, protocol. Regis-
tering services by interface has the advantage that the actual implementation
can be replaced and upgraded independently from the requesters to which
only interfaces have to be known. Different implementations may offer differ-
ent features internally, but externally have the same behavior. This indepen-
dent type-based identification allows for flexible execution of service-oriented
programs in an environment with replicated services. In SOOA, a proxy – an
object implementing the same service interfaces as its service provider – is
registered with the registries and it is always ready for use by the requester.

In a federated service environment not a single service makes up the sys-
tem, but the cooperation of services. Services can be broken down into small
component service instead of providing one huge all-in-one service. These
smaller component services then can be distributed among different hosts
to allow for reusability, scalability, reliability, and load balancing.

Instead of applying these metacomputing concepts to compute services
only, they can, and should, also be applied to data services as well. Once a file
is submitted to the network it should stay there. It should never disappear
just because a few nodes or the network segment goes down. Also, it should
not matter what client node the file is requested from. With the SILENUS dis-



4 Max Berger and Michael Sobolewski

tributed file system in place, SORCER also provides transparent, reliable, and
scalable file-based data services complementing the existing compute services.

SORCER is a federated service-to-service (S2S) metacomputing environ-
ment that treats service providers as network objects with a well defined
semantics of dynamic service object oriented architecture (DSOOA) based on
the FIPER methodology [12][13][11]).

3 SILENUS Methodology

SILENUS is based on a dynamic service object oriented architecture. As such,
it consists of individual service objects, which, when combined, provide the
SILENUS functionality. These components can broadly be categorized into
gateway components, data services, and management services. Figure 2 gives
an overview of the SILENUS architectural components.

SILENUS

WebDAV
Adapter

Silenus
Facade

Byte
Replicator

JXTA
Adapter

NFS
Adapter

Transaction
Manager

Byte
Store

Metadata
Store

Human
Interface

Gateway Services

Data Services

WebDAV
Adapter

Management Services

Mobile
Adapter

SILENUS

WebDAV
Adapter

Silenus
Facade

Byte
Replicator

JXTA
Adapter

NFS
Adapter

Transaction
Manager

Byte
Store

Metadata
Store

Human
Interface

Gateway Services

Data Services

WebDAV
Adapter

Management Services

Mobile
Adapter

Fig. 2. Component services of the SILENUS architecture

To store data in the SILENUS file system, the following assumptions about
the data are made:

• File metadata is relatively small. Therefore there is no a problem to repli-
cate the file metadata.



Lessons Learned from the SILENUS Federated File System 5

• File content is relatively large. Therefore files should be replicated for
reliability, but not onto every system.

• Management data, e.g., proxies to needed services and transactions, can
be handled autonomically. That type of data does not have to be known
to requesters explicitly, but it can be dynamically discovered in runtime
in the SILENUS environment.

3.1 Gateway Services

The Service Interface, NFS Adapter, Mobile Adapter, WebDAV Adapter, and
JXTA [6] Adapter are client modules. Each one of them serves a particular
type of client. The ones given here are just examples, adapters could be written
for any other existing file storage solution. The service interface (ServiceUI)
[10] provides support for file storage and management through a proprietary
user interface attached to a service provider. It provides access to the extra fea-
tures, which are not available through the other interfaces: advanced features
such as manual migration, number of replicas, log-file viewing, and others.
The service interface should only be needed for these extra features and can
be ignored by most users. The WebDAV Adapter provides support for oper-
ating systems that have support for WebDAV, such as Windows, Mac OS X,
and newer UNIX systems. It provides support for existing applications. This
gives current operating systems the possibility to use the SILENUS file stor-
age directly with no need to install any additional support. The NFS adapter
provides support for older UNIX systems that do not have WebDAV prein-
stalled. These adapters are just examples of various mappings from SILENUS
to existing systems, other adapters can be developed as well.

3.2 Management Services

The SILENUS Facade and Transaction Manager provide coordination ser-
vices. To make the client modules even smaller, the coordination between the
client modules and the providing services is sourced out to the SILENUS Fa-
cade. Facades are gateways to the SILENUS file storage for both user agents
and service providers. Each Facade provides a dynamic entry point to the
underlying SILENUS file metadata and content storage services. It takes care
of transactional semantics between file content and meta information stor-
age. The facade provides support for discovering the relevant services that
participate in a requester’s file upload/download federations. A Transaction
Manager is used for ensuring two-phase commit transactional semantics for
file uploads that involves at least metadata store and byte store services. The
Transaction Manager used in SILENUS is a Jini [3] standard service for han-
dling transactions in a distributed environment.

The Byte Replicator and other optimizer services provide support for auto-
nomic computing. In a classical data storage solution, an administrator has to
manually move and distribute files among different servers. In SILENUS, this



6 Max Berger and Michael Sobolewski

is done by optimizer services. These services will analyze the current network
conditions and make decisions on where to store files, where to keep replicas,
and even when to startup and shutdown services needed and underutilized ser-
vices. Each optimizer service is a separate component, allowing the SILENUS
administrator to chose exactly which kinds and how many optimizer services
to run on the network.

3.3 Data Services

The Byte Store provides functionality for creating and retrieving file content.
The Byte Store does not provide file attribute storage. It does, however, pro-
vide support for retrieving attributes that are derived from the file data. Such
attributes include file size and checksums. These can be used to verify the in-
tegrity of file contents. The Byte Store provides fast access to the files stored
on the provider’s host. Stored files are usually encrypted, but can be stored
unencrypted for performance reasons.

The Metadata Store provides functionality to create, list, and traverse
directories. It also provides functionality to retrieve the file data location. File
metadata is all the information that is either included in the actual file data
or that can be derived from the file data, such as file name, creation date,
file type, type of encryption, and others. As a matter of fact, the file storage
location, the file name, and even the directory a file is in are nothing different
than just three file attributes. This allows all these attributes to be handled
in a standard way persisted in the Byte Store’s embedded relational database.
Multiple versions of one file may exist in the database for recovery purpose.

4 Experimental Results

The SILENUS system was designed and implemented as part of a dissertation
research at Texas Tech University [2]. Over the course of three years, the
system has been designed, refined, and implemented. The core services, some
management services, and some gateway services have been implemented and
deployed in the SORCER Lab environment. The NFS adapter was used to
test the SILENUS framework performance.

What 0 KB 10 KB 1MB 100MB

Disk to disk (local) 0.0 sec 0.0 sec 0.0 sec 0.7 sec
Disk to SILENUS 0.2 sec 1.6 sec 1.7 sec 22.8 sec
SILENUS to disk 0.0 sec 0.1 sec 0.2 sec 16.6 sec

Fig. 3. Data collected for SILENUS performance using the NFS adapter in a 100
MBit network. The NFS adapter was run locally (1.8 GHz Core-Duo); the byte store
on a remote machine (1 Ghz AMD Duron)



Lessons Learned from the SILENUS Federated File System 7

Figure 3 shows that the performance of the SILENUS system is not so
much dependent on the actual file size but rather on the number of requests.
Creating an empty file is almost instant, but it still requires a file metadata
creation. Retrieving an empty file is instant, as there is no file content to
retrieve. For small files, the time for creating the file is about 2 seconds, not
really dependent on the file size. Retrieving a file is much faster: no transaction
is needed and no modifications are done. For a large file, the actual network
performance shows up as indicated in Figure 3 . Without any overhead, a
100 MB file could be transferred in about 9.3 seconds. For file upload, the
SILENUS system reaches 40% of the maximum network performance. For
file download this increases to 56% of the maximal network performance.
Given the overhead of locating the file, transferring it from a byte store to the
NFS adapter, and through the NFS protocol to the local host these values
are very satisfying. For concurrent engineering environments these values are
good enough to share large data files, such as CAD designs. As reading files
is more efficient, this system could be used with large files that must quickly
be distributed to multiple engineers.

5 Conclusions

This paper highlights the issues involved in designing and implementing fed-
erated file systems and demonstrates the feasibility of such deployment in
CE federated environments. The presented SILENUS architecture shares the
attributes of grid systems, P2P systems, dynamic service object oriented pro-
gramming, and inheriting the security provided by Java/Jini security services.
It is modularized into a collection of core distributed providers with multiple
remote Facades. Facades supply with a uniform access points via their smart
proxies available dynamically to file requesters. A Facade smart proxy encap-
sulates inner proxies to federating providers accessed directly (P2P) by file
requesters.

Core SILENUS services have been successfully deployed as SORCER ser-
vices along with WebDAV and NFS adapters. The SILENUS file system scales
very well with a virtual disk space adjusted as needed by the corresponding
number of required byte store providers and the appropriate number of needed
metadata stores to satisfy the needs of current users and service requesters.
Work is underway to improve upload- and download speed through a BitTor-
rent like system with the FICUS framework [17].

The system handles very well several types of network and computer out-
ages by utilizing the presented disconnected operation and data synchroniza-
tion mechanisms. It provides a number of user agents including a zero-install
file browser (service UI) attached to the SILENUS Facade. This file browser
with file upload and download functions is combined with an HTML editor
and multiple viewers for documents in HTML, RTF, and PDF formats. Also a
simpler version of SILENUS file browser is available for smart MIDP phones.



8 Max Berger and Michael Sobolewski

References

1. Max Berger and Michael Sobolewski. SILENUS – a federated service-oriented
approach to distributed file systems. In Next Generation Concurrent Engineer-
ing [5].

2. Maximilian Berger. SILENUS – A Service Oriented Approach to Distributed File
Systems. PhD dissertation, Texas Tech University, Department of Computer
Science, December 2006.

3. W. Keith Edwards. Core Jini. P T R Prentice-Hall, Englewood Cliffs, NJ 07632,
USA, 2001.

4. Sanjay Goel, Shashishekara S. Talya, and Michael Sobolewski. Preliminary
design using distributed service-based computing, 2005.

5. ISPE. Next Generation Concurrent Engineering. Omnipress, 2005.
6. JXTA. Project JXTA, March 2007. http://www.jxta.org/.
7. Vivek Khurana, Max Berger, and Michael Sobolewski. A federated grid envi-

ronment with replication services. In Next Generation Concurrent Engineering
[5].

8. M. Lapinski and Michael Sobolewski. Managing notifications in a federated
S2S environment. International Journal of Concurrent Engineering: Research
& Applications, 11:17–25, 2003.

9. P.J. Rohl P.J, R.M. Kolonay, R.K. Irani, M. Sobolewski M., and K. Kao. A
federated intelligent product environment. In 8th AIAA/USAF/NASA/ISSMO
Symposium on Multidisciplinary Analysis and Optimization, Long Beach, CA,
sep 2000.

10. ServiceUI Project. The ServiceUI project, March 2007. Retrieved from http:

//www.artima.com/jini/serviceui/.
11. Michael Sobolewsk and R. Kolonay. Federated grid computing with interactive

service-oriented programming. International Journal of Concurrent Enginering:
Research & Applications, 14(1):55–66, 2006.

12. Michael Sobolewski. Federated P2P services in CE environments. In Advances
in Concurrent Engineering, pages 13–22. A.A. Balkema Publishers, 2002.

13. Michael Sobolewski. FIPER: The federated S2S environment. In JavaOne,
Sun’s 2002 Worldwide Java Developer Conference, San Francisco, 2002. http:

//sorcer.cs.ttu.edu/publications/papers/2420.pdf.
14. Michael Sobolewski, Sekhar Soorianarayanan, and Ravi-Kiran Malladi-Venkata.

Service-oriented file sharing. In CIIT conference (Communications, Internet
and Information Technology), pages 633–639, Scottsdale, AZ, November 2003.
ACTA Press.

15. Sekhar Soorianarayanan and Michael Sobolewski. Monitoring federated services
in CE. In Concurrent Engineering: The Worldwide Engineering Grid, pages 89–
95. Tsinghua Press and Springer Verlag, 2004.

16. SORCER. Laboratory for Service-Oriented Computing Environment, March
2007. http://sorcer.cs.ttu.edu/.

17. Adam Turner and Michael Sobolewski. FICUS – a federated service-oriented
file transfer framework. 2007. ibid.

18. S. Zhao and Michael Sobolewski. Context model sharing in the FIPER en-
vironment. In 8th Int. Conference on Concurrent Engineering: Research and
Applications, Anaheim, CA, 2001.


