Data Access Object Pattern

Max Berger

October 30, 2005

Abstract

The data access object (DAO) pattern tries
to decouple the access to data from its under-
lying storage. Persisting data currently relies
heavily on the type of database used: Re-
lational database, object-oriented databases,
flat files. It would be preferable to chose
the type of database used during the deploy-
ment phase instead of the design phase. By
using data access objects the data is decou-
pled from its representation, thus allowing to
chose different data sources if necessary

1 Introduction

Data access objects provide the portability
for applications from one data source to an-
other data source. Many modern applica-
tions require a persistent database for their
objects. There are currently several common
types of databases: Flat files, object-oriented
databases and relational databases, with re-
lational databases being the most widely
used. Unfortunately these types of databases
are accessed in a very different way. Even
databases of the same type, such as relational

databases behave very similar but not exactly
identical. By using data access objects in-
stead of accessing the data source directly,
the type and implementation of the actual
data source is decoupled from its usage. This
allows moving from one data source to a dif-
ferent data source without having to change
the business logic.

2 The Data Access Ob-
ject Pattern

BusinessObject DataAccessOhject DataSource

Uses

encapsulates

~ I
~
- |
- " "

~ .. Obtainsimodifies |
™ ‘createsfuses

-
~ |

~

TransferOhject

Figure 1: Class diagram representing the re-
lationships for the DAO pattern

The data access object pattern decouples
the data from its abstraction by identifying
4 participants: The business object, the data

BusinessObject DataSource

: 1: Create

)

;

| 2: GetData

==
==

2.1: GetData

[TransferOhject
2.2 Create

2.?_,__Return Ohject

‘\\:‘J-‘
| 3: Bet Property

|T|=l' Set Propery
[setoae 5.1 Get Property
5.2; Get Property

| =

Y ¥

—1—1-

Vv

ittt i h SR

5.3 GetData

Figure 2: Sequence diagram that shows the
interaction between the various participants
in this pattern

access object, the data source and a trans-
fer object. Figure 1 shows a class diagram
of these participants and their relationships.
Figure 2 shows an example interaction be-
tween these classes.

The business object represents the class
with the business logic. Before the use of
DAO this is the class that had all of the re-
sponsibilities in it. Now this class is respon-
sible to know what and how to modify the
content, and not how to store it.

The data access object hides the actual
data source. Instead of talking to the data
source directly, the business object has to go
through the data access object. Therefore the

data access object can be easily be replaced
with an object for a different data source.

The data source is the actual data source.
In most cases this is some kind of relational
database accessed via SQL. It may also be a
flat file or an object-oriented database, what-
ever is available on the deployment platform.

The transfer object is used to transfer the
actual data contents from the data access ob-
ject to the business object and vice versa. It
represents the data stored in the database. It
is not directly connected to the data source.
Any changes to the transfer object must be
committed to the data access object before
they can become permanent.

2.1 DAO creation strategy

The high flexibility of the DAO pattern comes
from the use of the abstract factory and the
factory method patterns. Figure 3 shows a
possible class diagram for DAO factories.

The DAOFactory class is the base class.
It is abstract and provides methods to cre-
ate DAOs for different objects stored in the
database.

The RdAbDAOFactory is an implementa-
tion of the abstract factory. It has methods
to create concrete data access objects, in this
case for relational databases.

The RbdDAO1 and RdAbDAO2 classes are
concrete instances to access a particular piece
of information in the database. This exam-
ple supports what would be two tables in a
relational database, so there are two different
access objects for the two different pieces of
information.

DAOFactory

RdbDAOFactorny

| creates | creates
i W
RdhDAO1 RdbDAD2

v v

==jnterface== ==interface==
DAO1 DAD2

Figure 3: Factory for Data Access Object
strategy using Factory Method

The DAO1 and DAQO?2 interfaces represent
this particular piece of information. They

provide methods to create, retrieve, update,
and delete information (CRUD).

Figure 4 shows a more extensive exam-
ple with different data sources for relational
databases, XML files and object oriented
databases. The knowledge about creating a
data access object is stored in the concrete
factory classes.

Figure 5 shows a possible interaction be-
tween these classes for creating a data access
object for two different pieces of information
stored in a relational database.

3 Application of the DAO
in the Metadata Infor-

mation Database Stor-
age (MIDAS)

The Metadata Information Database Storage
(MIDAS) hold file metadata information. It
is a module in Sorcers Integrated Local En-
hanced New Users Storage (SILENUS). Cur-
rently MIDAS is implemented by storing its
information in a relational database accessed
via the Java Database Connectivity (JDBC).
All the paths and scripts are written for the
McKoi embedded relational database.

The classes in the current MIDAS will have
to be redesigned to work with the new data
access object pattern.

The actual data source will be the McKoi
relational database. Since the McKoi rela-
tional database is accessed via JDBC all com-
mon JDBC functionality should be removed
any put into a JDBC data access object.
Only McKoi related functionality should be
in the McKoi database class.

There are two separate pieces of informa-
tion that have to be kept for the MIDAS.
The first one is the information about the
files. Files are identified with a UUID. The
information they contain is a map of attribute
names and values. The second information is

DADFactory

RdhDAOFactory ¥mIDAOFactory OdbDAOFactory
| | | | I |
|creates |creates |creates | lcreates |
W W Vi i v Vi
RdbDAO1 RdbDAO2 ¥miDAO1 ¥miDAOZ OdbhDAOA OdhDAOZ

==interface==
DAO1

==jnterface==
DAOZ

Figure 4: Factory for Data Access Object strategy using Abstract Factory

«<E JB=» DAOFactory DataSource
BusinessObject

I 1: Get Factory for Rdb

I
I
RAbDAOFactory :
I
I
I
L] |
T 2: Get DADY |
I #1191 Create I
| I
| I
| |
3: Get DAD2 I . RdbDAD2 |
— } e 3.1: Creale | - I
| | I
| | I
l ' L |
L4 Get data i "l" | 4.1: Gel data |
! | 4.2: Return data | I |
| ! | |
5: Gel data I I ! l
L l .r] ==L 5.1 Getdata [
: ! : 5.2 Return data
l | ' |
6: Set data I I e
! l |] p=-L 6.1 Set data [
| [|
] [

im

4
|
I
I
I

Figure 5: Factory for Data Access Objects using Abstract Factory sequence diagram

attributes for the MIDAS itself. This keeps
information such as local and global times-
tamps which are used for synchronization.

Figure 6 shows a class diagram for the new
DAO implementation of the MIDAS. The ac-
tual data access has now been split in several
parts:

FileAttributesDao is the data access ob-
ject for the file attributes. It is realized
by a generic relational JdbcFileAttributes-
Dao and the more specialized McKoiFileAt-
tributesDao. It provides CRUD functionality
for file objects.

MidasAttributesDao is the data access ob-
ject for the MIDAS attributes. It is also
realized by a generic JdbcMidasAttributes-
Dao and a more specialized McKoiMidasAt-
tributesDao class. It provides CRUD func-
tionality to MIDAS attributes.

A generic DaoFactory contains the meth-
ods to create both of these access objects.
There are implementations for both generic
JDBC and McKoi.

4 Extensions to DAO

Several Extensions have been made to the
original DAO pattern. There have been sev-
eral attempts to make the DAO more generic
by adding a generic DAO that has support
for the 4 basic CRUD functions: Create, Re-
trieve, Update and Delete. Unfortunately all
these solutions sacrifice ease use of for re-
usability. If the DAOs will have to be used
with many different data sources and tables
this sacrifice may be worth it. In the given ex-
ample (MIDAS) there are two data sources.

Both are already very generic. Providing a
more generic interface will not help in this
case but make the use of the data sources
more complicated.

5 Conclusions

The DAO pattern can be used to decouple
the use of data from its actual storage. It pro-
vides support for many types of data sources
if used in conjunction with the factory pat-
tern.

The use of the data access object may also
encourage the use of additional functionality
with proxies, such as caching. This may im-
prove or decrease performance, depending on
the use of the data.

The MIDAS example showed that it is very
easy to apply the DAO pattern. The two
things that had to be done were: Identify
the actual data and move the database spe-
cific functionality in other classes. These two
simple steps give the MIDAS a large boost in
flexibility.

Midas 0AC model)

DaoFactory

+oietMidasA Rribote s0 20 0. Mida sd BebatesDao

+getFieARribote sDz oY FleditribotesDao

i
== interface == == interface ==
MidasAttributesDao FileAttributesD ao
+retrieveditribot el nameSting) Shing +epegte Flie (attvibate s Map). Shing
+updateditvibate fnamme: Sheing, hew l ale String v okd +retrieveMate hing Flesf aitribotes Map): Collcbion
+efeleteAtvibatainarme Shinglvold +upefabe File ol Sheing, attribotes Map rvoks
ﬂ +efefete Flalanid: Shrlngl v ok

. i

I I

| |

| |

! JhdcDaoF actory !

| |

| |

: +=init=(driver; String connedion: Stringuser: String password: String :

I I

| |

| crestes 1

! crestes !

| |
JdbchMidasAttributesDao JdbcFileAttributesD ao

McK oiD aoF actory
iy il
+<init=(directory: String password: String):
creates
create s

McK oiMidasAtiributesD ao

McKoiFileAttributesD ao

Created with Poseidan far Un L Community Edition. Mot for Commerzial Lsa.

Figure 6: Class diagram for a DAO implementation in Midas

