
SILENUS - A federated service-oriented approach to distributed file systems

Max Berger & Michael Sobolewski
SORCER Research Group, Texas Tech University

A new approach for a distributed file system SILENUS based on the federated service-oriented computing
environment SORCER is presented. Instead of services running on specific computers, the system is build from
federating services in the network. The services are: byte-store service (Byzantium) for the storage of the actual
date; metadata-store service (Midas) for information about the files; WebDAV adapter (Daphne) for support
for legacy applications and operating system; and optimizer services that keep the collaborating federations in a
healthy state. This system implements file-based data grid services in the SORCER environment that are needed
for collaboration of distributed teams.

1 INTRODUCTION
Ever since the introduction of a personal computer
there exists the problem of managing distributed data.
This data is usually stored on one host and not easily
accessible for other users or from other hosts.

The current trend goes away from a personal com-
puter back to a networked one. We want to work any-
where, anytime, and of course always have the same
consistent view on the same data available.

It gets even worse when it comes to collaboration
in larger, and distributed engineering teams. Data files
have to be accessed in real-time at different locations.
Versions have to be managed in a consistent manner.
There must be support for offline-use of data and for
concurrency management.

Several systems exist to access data that is spread
across multiple hosts. However, except for a few ex-
ceptions, all of them require manual management and
knowledge of the exact data location. Very few offer
features like local caching or data replication.

In an integrated environment, all entities must first
be connected, and they then must work cooperatively.
Services that support concurrency through communi-
cation, team coordination, information sharing, and
integration in an interactive and formerly serial prod-
uct development process provide the foundation for a
CE environment. Product developers need a CE pro-
gramming and execution environment in which they
can build programs from other developed programs,
built-in tools, and knowledge bases describing how
to perform a complex design process. Like any other
services in the environment, a CE distributed file sys-
tem can be structured as a collection of collaborating

distributed services enabling for robust, secure, and
shared vast repository of engineering data.

Under the sponsorship of the National Institute
for Standards and Technology (NIST) the Feder-
ated Intelligent Product Environment (FIPER) (?,
b, ?) was developed (1999-2003) as one of the
first service-to-service (S2S) grid computing envi-
ronments. The Service-Oriented Computing Environ-
ment (SORCER) (?, ?, ?) builds on the top of FIPER
to drastically reduce design cycle time, and time-to-
market by intelligently integrating elements of the de-
sign process by providing true concurrency between
design and manufacturing. The systematic and agile
integration of humans with the tools, resources, and
information assets of an organization is fundamental
to concurrent engineering (CE).

In this paper, we discuss a novel approach to share
data across multiple service providers using dedicated
storage, metainformation, replication, and optimiza-
tion services in SORCER. The access via WebDAV
(?) adds to the idea of heterogeneous interactive pro-
gramming, where the user through its diverse oper-
ating system interfaces can manage shared data files
and folders. The same data can be accessed and up-
dated by different service providers and authorized
users can monitor data processing activities executed
by the service providers involved with co-operating
WebDAV user agents. Like any other services in the
environment, the SILENUS services are also peers in
the SORCER network.



Figure 1: Service-Oriented Architecture

1.1 Service-Oriented Computing
Instead of thinking of a service offered by a partic-
ular host, the paradigm shift should be towards ser-
vices in the network –the computer is the network.
In classical distributed applications, it is necessary to
know exactly on which host a particular service is
exposed. In most distributed file systems, for exam-
ple, it is necessary to know the name of a host that a
particular file is stored on. In a service-oriented envi-
ronment a service provider registers itself with a ser-
vice registry. The service registry facilitates lookup of
services. Once a service is found a service requester
binds to the service provider and then can invoke its
services. Requesters do not need to know the exact
location of a provider beforehand, they can find it dy-
namically. They discover a registry and then lookup
a service. On the other hand, a provider can discover
the registry and publish its own service, as depicted in
Figure 1.

A service is identified by an interface (type) rather
than its implementation, protocol, or name. If a ser-
vice provider registers by name, the requesters have
to know the name of the service beforehand. Regis-
tering services by interface has the advantage that the
actual implementation can be replaced and upgraded
independently from the requesters. Different imple-
mentations may offer different features internally, but
externally have the same behavior. This independent
type-based identification allows for flexible execution
of service-oriented programs in an environment with
replicated services.

A service-oriented program is composed of tasks,
jobs, and service contexts. These concepts are defined
differently than in classical grid computing. A ser-
vice job is a structured collection of tasks and jobs.
A task corresponds to an individual method to be ex-
ecuted by a service provider. A service context de-
scribes the data that tasks works on. This approach

is different from classical grid computing, where a
job corresponds to the individual method. In UNIX
analogy the individual tasks correspond to UNIX pro-
grams and commands. The context would be the input
and output streams. A job corresponds to a shell script
or a complex command line connecting the tasks to-
gether. Service-oriented programs can be created in-
teractively and allow for a federated service environ-
ment (?).

In a federated service environment not a single ser-
vice makes up the system, but the cooperation of ser-
vices. A service-oriented job may consist of tasks that
require different types of services. Services can be
broken down into small service methods instead of
providing one huge all-in-one service. These smaller
methods then can be distributed among different hosts
to allow for reusability, scalability, reliability, and
load balancing.

Instead of applying these grid concepts to compu-
tational tasks, they can, and should, also be applied to
data. Once a file is submitted to the network it should
stay there. It should never disappear just because a
few nodes or the network segment goes down. Also,
it should not matter what client node the file is re-
quested from. With the SILENUS distributed file sys-
tem in place, SORCER will also provide reliable and
scalable file-based data services complementing the
existing method services.

1.2 Scenarios
Who would benefit from an advanced file system?
From many possible scenarios four are described be-
low.

CE: Distributed, concurrent engineering teams
would greatly benefit from this system. They work
at different physical locations, on different computer
systems, with different computer architectures. How-
ever common data such as design documents, sched-
ules, engineering data, notes, etc. have to be shared.
The support for versioning will allow the team to go
back to older versions, if necessary, but most impor-
tantly to ensure that the current version is available
to all team members instantly. Data will always be
downloaded from one of the hosts available. If a file
is already available on a host in the local network this
location will be preferred over a host at any remote
location. This enables faster updates and ensures that
slower WAN links are less used.

Computer Lab: A computer lab is a large array of
computers. All computers should behave identically
to the user, and offer the same file space. These lab
systems usually use a central file storage server, which
is a single point of failure. However, each lab host has
a big hard drive nowadays, which is hardly used, if at
all.



Astronomy: In a sky survey (?) the amount of data
collected is very large. There must be some way to
spread data files over multiple computers, or to make
whole or partial files available to different users on
different hosts. These files are usually associated with
metadata. The metadata has to be kept in some kind of
database to allow fast retrieval of the important data.

High energy physics: When the Large Hadron Col-
lider (LHC) study of subatomic particles and forces at
CERN will launch in 2007, it will be one of the great-
est data management challenges. More than a giga-
byte of data will be generated every second. This data
will have to be distributed among researchers around
the world. With these large amounts of data it is very
important to prefer local replica over remote replica
locations to minimize bandwidth usage. (?)

2 BACKGROUND REVIEW
2.1 Distributed Filesystems
To compare SILENUS with existing distributed file
storage solutions, several file system features can be
considered. These features are then examined with re-
spect to their implementation in the Andrew File Sys-
tem (AFS) (?), Coda (?) (?), and file storage in Globus
(?, ?, ?, ?).

The existing file systems have a fixed transport pro-
tocol. Globus is based on FTP. AFS and Coda use
UDP packets and implement their own transport man-
agement. The transport in SILENUS is protocol inde-
pendent. It is based on Jini (?, ?) endpoints (JRMP,
JERI, HTTP, HTTPS, SSL, . . . ). This makes it config-
urable without recompilation. It even supports proto-
cols that were not available during development. Thus
it can easily be adapted to firewalls and other network
specific configurations.

AFS and Coda use UDP packets for better per-
formance than TCP streams. Globus uses TCP
streams for better reliability than UDP packets. Since
SILENUS is transport independent, it can be tuned for
the individual needs accordingly.

The security in Globus, AFS, and Coda is based on
Kerberos (?). Kerberos is a proven system for authen-
tication. It does not directly provide any other secu-
rity features, such as confidentiality. Data is still trans-
ferred as plaintext, thus allowing everyone in the net-
work to read all transferred data. SILENUS stores file
encrypted and decrypts them on the user’s computer.
Network listeners can observe that a file is transferred,
but are unable to read the actual content.

In most file systems, including AFS and Coda,
there is no explicit separation of file metadata and file
content. To get information about a file, the file has
to be found first, and then the information about the
file can be read. Globus as well as SILENUS sepa-
rate file information into file content and information
about the file (metadata). This allows for additional

types of metadata to be defined, thus describing files
more precisely. This additional metadata can be ex-
tracted from the file content once and then queried
and accessed efficiently.

Among the existing file systems only Coda allows
for disconnected operation. AFS and Globus will fail
if the network fails, there is no proper recovery mech-
anism. This makes these filesystems impractical for
mobile computing, for example using laptops or mo-
bile phones. SILENUS is designed to handle unex-
pected network disconnections efficiently.

To support existing applications, a file system
needs native support within operating systems. For
automatic update in Globus, a file has to be down-
loaded, then needs to be modified, and has to be up-
loaded again. AFS and Coda, as well as SILENUS
provide a file system driver for most common operat-
ing systems.

The usage of storage on AFS and Coda servers has
to be optimized manually. Globus introduced an opti-
mizer service that tries to move data for better perfor-
mance. SILENUS allows for several autonomic opti-
mizer services that can be tailored to a specific envi-
ronment.

The major difference between SILENUS and the
other systems is in the distributed architecture. While
the existing file systems are based on a client-
server architecture, SILENUS is based on a feder-
ated service-to-service architecture. Usually systems
need to be configured for each specific environment.
In particular, addresses of server machines have to be
set on every client, and changed every time the net-
work topology changes. The discovery mechanisms
in SILENUS make these configuration issues dy-
namic and on-the-fly.

2.2 SORCER
SORCER is a federated S2S framework that treats
service providers as network objects with a well de-
fined semantics of service-object-oriented (SOO) pro-
gramming based on the FIPER technology (?, b,?).

Each SORCER provider offers services to other
peers on the object-oriented overlay network. These
services are exposed indirectly by methods in well-
known public remote interfaces and considered as ele-
mentary (tasks) or compound (jobs) program instruc-
tions of SOO programming methodology (?). A SOR-
CER program can be created interactively (?) or pro-
grammatically (using SORCER APIs) and their exe-
cution can be monitored and debugged in the over-
lay network (?). Service providers do not have mu-
tual associations prior to the execution of a SOO pro-
gram; they come together dynamically (federate) for
all component tasks and jobs in the SOO program.

Each provider in the federation executes a task, or
a job. A job is coordinated by a Jobber - one of SOR-



Figure 2: The SILENUS conceptual architecture

CER infrastructure services (?). However, a job can
be sent to any peer. A peer that is not a jobber is re-
sponsible to forward the job to an existing jobber in
the SORCER grid and return results to the requester.
Thus, any peer can handle any job or task. Once the
job execution is complete, the federation dissolves
and the providers disperse and seek other SSO pro-
grams to join. Also, SORCER supports a traditional
approach to grid computing - like in Condor (?) and
Globus (?) style. Here, instead of SOO programs be-
ing executed by services providing a business logic
for requested tasks, the business logic comes from
the service requester’s executable programs that seeks
compute resources on the network provided by grid
services. These services in the SORCER grid are as
follows: GridDispatcher and Jobber for traditional
grid job submission; Caller and Tasker for task exe-
cution (?).

To integrate applications and tools on a B2B grid
with shared engineering data, the File Store Service
(FSS) (?) was developed as a core service in SOR-
CER. The value of FSS is enhanced when both web-
based user agents and service providers can readily
share the content in a seamless fashion. The FSS
framework fits the SORCER philosophy of grid in-
teractive SOO programming, where users create dis-
tributed programs using exclusively interactive user
agents. However FFS does not provide the S2S flexi-
bility with separate specialized and collaborating ser-
vice providers for file storage, replication, and meta
information that are presented in this paper.

3 ARCHITECTURE
The SORCER infrastructure was chosen as the base
for the SILENUS file storage. Many concepts and
components are already implemented and tested and
do not need to be reinvented. It provides an already
existing S2S-framework with well-defined SOO pro-
gramming and grid computing services.

The SORCER environment has been actively de-
veloped in the SORCER lab at the Texas Tech Uni-
versity (?). It is based on Jini network technology (?,
?) and is implemented in Java.

SILENUS (SORCER’s Integrated Local Enhanced
New User’s Storage) consists of several federating
services. Each of the services may be replicated on
as many hosts as needed on the network.

The conceptual architecture of SILENUS is de-
picted in Figure 2. All individual services are de-
scribed below in more detail.

3.1 Byte-Store
The byte-store service is the lowest level service. In
hardware terminology it resembles a hard drive. It is
responsible for storing files on local computers. Files
are identified by an UUID (Universal Unique Identi-
fier), rather than by an actual filename. This way mul-
tiple versions of the same file stored can be stored in
the same byte-store.

The SILENUS byte-store implementation called
Byzantium is based on John McClain’s byte-store
implementation Holowaa (?). However, the interface
for Byzantium is extended to allow for disk space
management, persistence, and multi-source down-
load. One important new functionality in Byzantium
is the unique and persistent identification of file con-
tent by UUID. In the Holowaa byte-store, file-byte-
sequences are accessed by ByteSequenceAccessors to
make programming simpler The accessor object al-
ready contains all the context information and meth-
ods needed to access the file content. Unfortunately
these accessors do not persist state, thus if the byte-
store dies for any reason, the accessor becomes in-
valid. To avoid this problem, the Byzantium byte-
store introduces persistent UUIDs.

3.2 Metadata-Store
The second SILENUS service is the metadata-store.
It is equivalent to a file system in traditional storage
systems. A metadata-store actually identifies byte-
sequences by name and orders them in a tree-like
structure. The SILENUS metdata-store implementa-
tion is called Midas. Midas stores the metadata in-
formation in a database, for fast access and process-
ing. The McKoi database (?) is used by Midas as
it provides an efficient embedded database solution,
but it could be replaced by any JDBC (?) compatible
database.

The metadata-store persists any kind of metainfor-
mation about files. It uses generic key-value pairs.
The key is the attribute, such as “filename” or
“owner”, while the value holds the actual data such as
“bla.txt” and “Max”. This allows for classical file in-
formation such as filename, owner, and size, but also
other attributes: file icon, checksum, size of an image,
artist of a recording, full title of a video, etc.. It is up
to the user which additional attributes are needed.

Metainformation is stored in a database that makes
searches faster than storing it in unstructured formats.
That allows querying for file attribute values without
parsing the file content, thus retrieving information
quicker.



Midas has built-in support for disconnected opera-
tions. Metainformation stored in all metadata-stores is
identical, as long as they are connected. In the case of
unexpected disconnection, the user will be able to use
the file system by just being connected to at least one
existing metadata-store. Whenever a reconnection is
detected, the information in both sets of metadata-
stores are synchronized instantly with the followup
updates in relevant byte-stores.

While information entered into the Midas database
gets synchronized instantly with all other available
metadata-stores, a file uploaded to a Byzantium store
does not get replicated in all other byte-stores. Both
Midas and Byzantium can run on the same host, but
that is not mandatory as either Midas or Byzantium
only can be started up. Thus, the number of Midas and
Byzantium providers does not need to be equal. The
number of byte-stores depends on the size of the file
space needed and significance of files used (for details
see Section 3.5). The number of metadata-stores de-
pends on the number of clients browsing and editing
the file system at the same time.

3.3 WebDAV Adapter
To use SILENUS by applications compatible with the
local file system only, a WebDAV adapter is provided.
This adapter will ensure full compatibility with ex-
isting clients and applications. All major operating
systems have support for NFS (?), SMB/CIFS, and
WebDAV (?). NFS lacks several security features.
SMB/CIFS is partially deciphered by the Samba
group (?). At this time, the only open and widely
supported specification is WebDAV. Thus, instead of
rewriting file system drivers for numerous operat-
ing systems the approach is to provide a SILENUS
adapter based on the WebDAV protocol.

WebDAV is based on the HTTP protocol (?). It is
well supported by open-source Slide project (?). As a
matter of fact, this allows us to use the standard Java
Servlet implementations for the adapter. It can be used
within any Java Servlet engine, such as Apache Tom-
cat (?).

Support for the WebDAV protocol is build into
many several operating systems: Windows, Mac OS
X, and Linux. In Windows WebDAV is supported
under the name“WebFolders”. WebFolders can be
opened and browsed with the build-in support for
Windows Explorer. In Mac OS X WebDAV resources
can be connected to like any other remote file system.
They can be used with Finder and all native appli-
cations. Linux support is on its way with the Davfs2
project (?).

There are also several operating system indepen-
dent clients available for WebDAV. The Nautilus file
browser, part of the GNOME system supports Web-
DAV folders natively. DAVExplorer is a graphical

Figure 3: The Midas metadata-store ServiceUI win-
dow

Java-based client written at the University of Califor-
nia, Irvine (?). And Cadaver (?) is a simple command
line client. All these are available for a wide variety
of platforms.

Extension to the WebDAV protocol are defined in
later RFCs. Version support is added by (?). Access
Control lists are defined in (?). These extensions offer
a standard way to access the extended functionality.
Unfortunately the existing WebDAV extensions can
not provide all of SILENUS functionality, thus com-
plementary user agents have been developed and are
described below.

The WebDAV adapter provides access to all ap-
plications compatible with the local file system op-
erations using the existing flexible support available
on almost any platform. Most widely used platforms
even have native support for WebDAV.

3.4 User Agents
SILENUS can be accessed through different types of
user agents. The WebDAV adapter described above
provides support to existing applications. UI objects
can be attached to SORCER service providers as what
is called ServiceUI (?). ServiceUIs for Jini services
can be accessed within service browsers. SILENUS
APIs offer programatic support as well.

SILENUS’ ServiceUIs can be displayed through
a service browser. A service browser is a common
user agent for accessing Jini-based services. A ser-
vice browser has the ability to download and create
the user interface for any service. The service browser
is similar to a web browser. It does not require any
configuration to find and access services, but is able to
download and show ServiceUIs on its own. Currently,
service browsers are offered by IncaX (?) and by the
JGrid Project (?, ?). The IncaX browser has been used
in all SILENUS development and deployment.

Each SILENUS service provider implements a cus-
tom ServiceUI. Byzantium ServiceUI provides ac-
cess to low-level byte-store functions such as deleting
file replicas or retrieving raw file content. Midas Ser-
viceUI offers support for browsing, viewing, moving,



copying, uploading and downloading files. It has also
full support for viewing and editing file attributes. A
Midas ServiceUI user agent accessed via IncaX and
displaying the Midas root directory is presented in
Figure 3.

3.5 Optimizers
Optimizer services are provided to add intelligence to
the SILENUS file system. Since Byzantium instances
in the SORCER grid can store different content, it is
possible that a downloaded file can come from a re-
mote Byzantium instance while a local one is avail-
able with no copy of that file. In this case that file
is automatically replicated onto the local Byzantium
provider. However, with the solution above there is no
smart replica management in the grid. Eventually, all
files will be replicated on all Byzantium nodes, and
all the nodes would run out of disk space. To solve
this problem, optimizer services are introduced.

Optimizer services are self-contained services in
the SILENUS federation. These services are indepen-
dent from metadata-store and the byte-store services
and even from each other. Multiple instances of each
optimizer service can be active or even they can be
absent. In the former the file system converges to
efficient disk space utilization with SILENUS self-
management, in the latter manual configuration and
extensive administration is needed.

Special multiplicity attributes describing the signif-
icance of files in SILENUS are considered. SILENUS
Multiplier (SM) optimizer service keeps the number
of copies of a particular file in a range between Min-
Multiplicity and Max-Multiplicity. A Watermark-
Level number of recommended file replicas is based
on a short-term strategy of file usage. Thus, the max-
imum number of copies can reach Max-Multiplicity
but when usage drops then the number of copies
will be reduced to the current Watermark-Level. Min-
Multiplicity and Max-Multiplicity can be adjusted
based on the long-term strategy of file usage.

Most regular files have Min-Multiplicity equal to
2, which means when Byzantium holding that file
goes down, there will always be a spare file replica
available. However, some files are less significant, or
just too large to be replicated so Min-Multiplicity in
this case is set to 1. Some files, for example work-
ing thesis documents, are very important. They should
be always available even if a catastrophe destroys
a couple of buildings hosting some SILENUS ser-
vice providers. These files should have a higher Min-
Multiplicity of file replicas, for example in the range
from 10 to 100. SM always evaluates multiplicity at-
tributes in all metadata-stores, checks for availability
of required number of files in all byte-stores and if
more are needed multiplies them or deletes excessive
copies.

A second optimizer service is the SILENUS Pro-
visioner (SP). This provider controls the number of
Byzantium, Midas, and optimizer services running in
the network. SP takes into account the considerations
as described at the end of Section 3.2. If SILENUS
is running low on available disk-space then SP can
provision more byte-stores. If a byte-store is hardly
used, then SP reallocates the data from this byte-store
to other ones and then shuts down the one with low
usage. Additional metadata-stores are provisioned or
existing less used are removed by SP based on the
number of requests for their metadata. Optimizer ser-
vices are provisioned in relation to the network size:
more metadata-stores and byte-stores are running,
more optimizer services are needed.

Other optimizer services that take into account ca-
pabilities of different hosts on the network may be
considered in the future. A server might be available
24/7, and therefore is appropriate to store critical files.
A work computer is predominantly available for half
a day so working files can be saved there and used
by the person which is usually at that particular com-
puter. A laptop that is constantly disconnected is prob-
ably an inappropriate place to store any files, except
for the ones needed while working at that computer.

These are only a few examples of what optimizers
can and should do. Since they are independent from
the other service providers, new optimizers can be
added to improve the overall SILENUS performance.
It is totally up to the administrator of the file system
to decide which particular optimizers to deploy, oth-
erwise SP will maintain the right number of Midas,
Byzantium, and complementary optimizer services in
the federation autonomically.

4 CONCLUSIONS
A solution for storage management in file-based data
grids is proposed. Splitting up the file system in fed-
erating services provides for high scalability. Replica-
tion and autonomic provisioning of services improves
reliability and solves the problem of network and
computer outages. The SILENUS federated frame-
work allows for complementary services to satisfy fu-
ture needs.

Although the basic design has been completed,
there are still some open issues, and some of the ideas
presented in this paper have not actually been imple-
mented yet.

Two versions of Byzantium have been imple-
mented. One is based on the Holowaa code that uses
direct TCP connections for data transfer. Another one
uses Java RMI for data transfer. Both implementa-
tions perform well in initial tests, however detailed
performance analysis is needed to make appropriate
recommendations.



Midas and its ServiceUI have been developed as
well. The current implementation is based on work
done by Vivek Khurana (?). The previous version was
successfully tested with large datafiles for the Basic
Local Alignment Search Tool (BLAST).

Other SILENUS services, in particular optimizers,
are in the design phase. Selection of relevant heuris-
tics for optimizers is under ongoing investigation. For
the WebDAV adapter the support in different operat-
ing systems is under detailed investigation as well.


